
!

C++ PROGRAMMING

Lecture 13

Secure Software Engineering Group

Philipp Dominik Schubert

CONTENTS

1. Introduction to the final project

1. Input files

2. Smith-Waterman algorithm

3. Comparing the sequences / parallelization

4. Post processing and output files

2. Miscellaneous and advanced topics

3. What next?

© Heinz Nixdorf Institut / Fraunhofer IEM2

Introduction to the project

 Compare genome sequences to each other

 DNA sequencing machines

 Decode DNA molecules

 Produce massive sequence (text) files

 E.g. ion torrent sequencer

 Price: ~ $ 50.000

© Heinz Nixdorf Institut / Fraunhofer IEM3
[Figure taken from http://gizmodo.com/5709604/got-50000-you-can-buy-yourself-a-personal-dna-sequencing-machine]

Introduction to the project

 Sequence alignment

 ATTGACCTGA

 ATCCTGA

 How to find an optimal alignment?

 Smith-Waterman algorithm

 Find optimal alignment score (similarity)

 Find optimal alignment (according to the score)

© Heinz Nixdorf Institut / Fraunhofer IEM4
[Figure taken from http://gizmodo.com/5709604/got-50000-you-can-buy-yourself-a-personal-dna-sequencing-machine]

 What is an alignment?

 An alignment is a sequence of operations that transforms one sequence into another one

 Allowed operations

 Substitution

 Copy

 Deletion

 Insertion

Introduction to the project

© Heinz Nixdorf Institut / Fraunhofer IEM5
[Figure taken from http://gizmodo.com/5709604/got-50000-you-can-buy-yourself-a-personal-dna-sequencing-machine]

Input files

 Sequence files are in fasta format

 .fasta

 .fas

 .fa

> A fasta example header

ATAAGGTACGACACACT

AGATacacacatgAAAG

AACAGACTTAtattTTT

 Sequence files can be huge

 Reading line by line is usually too slow

 Read file as one block

 No need for memory mapped files

 Tasks to solve

 Read files from disk

 Remove the header line

 Remove line breaks '\n'

 Convert to upper case letters

© Heinz Nixdorf Institut / Fraunhofer IEM6

Smith-Waterman
algorithm

 Perform algorithm on

 ACGA

 TCCG

 Weights

 𝜔𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ = 𝜔𝑔𝑎𝑝 = −1

 𝜔𝑚𝑎𝑡𝑐ℎ = 2

 Create matrix

 Initialize first row to 0

 Initialize first column to 0

 Fill matrix according to recurrence

 Largest matrix entry is the score

 (Optimal alignment could be reconstructed from matrix)

 We are only interested in the score: Do we really need a matrix?  No!

© Heinz Nixdorf Institut / Fraunhofer IEM7

\ 𝜖 A C G A

𝜖 0 0 0 0 0

T 0 0 0 0 0

C 0 0 2 1 0

C 0 0 2 1 0

G 0 0 1 4 3

http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Smith-Waterman

http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Smith-Waterman

Parallelization, calling the Smith-Waterman algorithm multiple times

 Compare each 50 character segment of
sequence 𝑛 to each 50 character segment of
sequence 𝑚 using the Smith-Waterman algorithm

 Split into subtasks

 Suppose running two threads

 Split sequence 𝑛 into two parts

 One thread compares every segment of first
part to every segment of second sequence

 Other thread compares segments of second
part to every segment of second sequence

 Caution at borders of parts

 Caution for thread working on last part

 Both sequences are only read from (no need for
synchronization)

 Make both sequences global variables!

49

49
…

…

 You may wish to use at() rather than operator[]
to ensure indices are within valid bounds or use
Clang’s sanitizers or Valgrind

© Heinz Nixdorf Institut / Fraunhofer IEM8

How to model the tasks?

 Model a task as a class

 Provide member variables to capture all required
information to solve the task

 Start of its corresponding part in sequence 𝑛

 End of its corresponding part in sequence 𝑛

 …

 Provide a constructor to correctly initialize
members and set up the task

 Implement the call operator to start the actual
computations

 Example

/* this is not complete */

class SWDTask {

private:

size_t seq_one_start;

size_t seq_one_end;

int smith_waterman_distance(…);

public:

SWDTask(size_t sos, size_t soe);

void operator() ();

};

© Heinz Nixdorf Institut / Fraunhofer IEM9

Caution: avoid unnecessary copies of std::string

 Copying data blocks the processors

int smith_waterman_distance(std::string a, std::string b);

for (/* hot loop */) {

smith_waterman_distance(/* ... */, /* ... */);

}

A. Have the sequences as global variables and just pass start and end positions

std::string n = /* ... */;

std::string n = /* ... */;

int smith_waterman_distance(int start, int end);

for (/* hot loop */) {

smith_waterman_distance(/* ... */, /* ... */);

}

B. Or use C++ 17 std::string_view

 Runtimes may vary from
several seconds up to one
hour!

© Heinz Nixdorf Institut / Fraunhofer IEM10

Post processing

 For each starting position in one sequence

 Find the starting position in the other sequence
with the highest score

 Add this highest-score-triple to your post-
processed final results

…
Start in SOX3 Start in SRY Score

0 0 80

0 1 85

0 2 81

1 10 90

1 15 96

2 4 72
 These are fictional results

© Heinz Nixdorf Institut / Fraunhofer IEM11

Output results

 Write the post-processed results back to a file

 Use a csv (comma separated values) file format

SOX3,SRY,Score

10,20,74

14,25,80

123,243,96

214,501,81

 Plot the results using the python script

 Or plot the results using a spreadsheet software like Libre Office, Google Sheets or MS Excel

 Hand-in your solution using the PANDA submission system

 The entire source code, compile command(s) (e.g. Makefile), and plots

 Include a README with your complete name (first name, middle name, last name), field of study and
faculty

 Again, those are fictional results

© Heinz Nixdorf Institut / Fraunhofer IEM12

Results before preprocessing

© Heinz Nixdorf Institut / Fraunhofer IEM13

Results after preprocessing

© Heinz Nixdorf Institut / Fraunhofer IEM14

Questions about the project?

© Heinz Nixdorf Institut / Fraunhofer IEM15

This is not a group project: plagiarism is prohibited will not be tolerated.

There is still more!

© Heinz Nixdorf Institut / Fraunhofer IEM16

C++ Programming

Optimize optimized things

 “Writing fast code”, Andrei Alexandrescu

 Part I
https://www.youtube.com/watch?v=vrfYLlR8X8k

 Part II
https://www.youtube.com/watch?v=9tvbz8CSI8M

 Example

size_t count_digits(size_t number){

size_t digits = 0;

do {

++digits;

number /= 10;

} while (number);

return digits;

}

 An (micro-)optimized example

size_t count_digits(size_t number){

size_t digits = 1;

for (;;) {

if (number < 10) return digits;

if (number < 100) return digits + 1;

if (number < 1000) return digits + 2;

if (number < 10000) return digits + 3;

number /= 10000;

digits += 4;

}

}

 Why is the second version faster?

 Division is a more expensive operation

 Comparison and addition is much cheaper

© Heinz Nixdorf Institut / Fraunhofer IEM17

https://www.youtube.com/watch?v=vrfYLlR8X8k
https://www.youtube.com/watch?v=9tvbz8CSI8M

Miscellaneous

 Very incomplete list of names to know

 Bjarne Stroustup

 Andrei Alexandrescu

 Chandler Carruth

 Sean Parent

 Herb Sutter

 Scott Meyers

 … many more

 C++ on youtube

 CppCon

 code::dive

 … many more

© Heinz Nixdorf Institut / Fraunhofer IEM18

Allocators for container types

 C++ concept – Allocator

 http://en.cppreference.com/w/cpp/concept/Allocator

#include <iostream>

#include <memory>

int main() {

// usually

int *i = new int(42);

int *array = new int[10];

delete i;

delete[] array;

// one level deeper

std::allocator<int> a;

int *other = a.allocate(10);

for (int i = 0; i < 10; ++i)

other[i] = 2;

a.deallocate(other, 10);

return 0;

}

 Every STL/BOOST container can be
parameterized by an allocator!

 Allocator defines an allocation strategy

 When to allocate memory?

 When to deallocate memory?

© Heinz Nixdorf Institut / Fraunhofer IEM19
[Figure taken from http://www.quickmeme.com/img/e7/e7633bedf897bb24ce668ac9c5df6bf88a58ff7e114d27606a756f4c4888a3f1.jpg]

http://en.cppreference.com/w/cpp/concept/Allocator

Allocators for container types

 Calls to new and delete are bottle-necks in HPC

 Calls go to the operating system, everything else
has to wait

 Imagine some iterative algorithm

matrix a = // some matrix;

matrix b = // some matrix;

// some iterative algorithm

while (some condition) {

matrix c = a * b;

a = update(a, c);

b = update(b, c);

}

// use matrix a, b, c

matrix update(const matrix& m,

const matrix& n) {

matrix result(...); // initalize

for ...

for ...

result[][] = m[][]

return result;

}

 Suppose matrix allocate its elements on the heap

 new and delete are called many times!

 If operator* and update() are optimized, new
and delete will become a bottle-neck

 A custom allocator helps with that!

20 © Heinz Nixdorf Institut / Fraunhofer IEM

Allocators for container types

 Allocators allow to define your own allocation
strategy

 For example (most game consoles do this)

1. Call new only once at program start

 Allocate everything you need up-front

2. At runtime your allocator takes care

3. Call delete only once at the end of your
program

 BOOST provides some allocator implementations

 Caution

 Objects allocated with different allocators cannot
be used together!

 http://en.cppreference.com/w/cpp/concept/Allocator

 The minimal allocator

#include <cstddef>

template <class T>

struct SimpleAllocator {

typedef T value_type;

SimpleAllocator(/*ctor args*/);

template <class U>

SimpleAllocator(const SimpleAllocator<U> &other);

T* allocate(std::size_t n);

void deallocate(T* p, std::size_t n);

};

template <class T, class U>

bool operator==(const SimpleAllocator<T>&,

const SimpleAllocator<U>&);

template <class T, class U>

bool operator!=(const SimpleAllocator<T>&,

const SimpleAllocator<U>&);

© Heinz Nixdorf Institut / Fraunhofer IEM21

http://en.cppreference.com/w/cpp/concept/Allocator

Separate allocation from initialization: new and delete revisited

 Allocating a type dynamically is a two step process

 Allocate memory on the heap

 Initialize the memory using the constructor

 Can we re-use the allocated heap memory?

 Yes!

struct S {

int x;

int y;

S(int x, int y) : x(x), y(y) {}

}

int main() {

S *s = new S(1, 2);

s->x = 13;

s->y = 13;

delete s;

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM22

Separate allocation from initialization

 http://en.cppreference.com/w/cpp/memory/new/operator_new

 Use (default) placement new

#include <iostream>

#include <cstdlib>

#include <memory>

struct S {

int x;

int y;

S(int x, int y) : x(x), y(y) {}

void print() {

std::cout << "x: " << x

<< ", y: " << y << '\n';

}

};

 You can also define your own operator new and delete

int main() {

// using the heap

S *s = new S(1, 2);

s->x = 13;

s->print();

// call dtor but do not free

s->~S();

// construct and place in 's'

S *t = new(s) S(42, 1024);

t->print();

// call dtor and free

delete t;

// using the stack

unsigned char buffer[100];

// construct and place in 'buffer'

S *u = new(buffer) S(11, 22);

u->print();

// is on stack, so call dtor

u->~S();

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM23

http://en.cppreference.com/w/cpp/memory/new/operator_new

Debug your code: gdb and lldb

 If the code is too complex to be executed in your head …

let a debugger execute it for you!

 gdb GNU debugger

 lldb LLVM debugger

 Command-line debugging tools

 What is debugging:

 Inspect your code and your variables, registers, … by executing it line by line

 Set break points and halt your program at interesting points

 Painful (but practical) to use in the command-line

 Better use it within some IDE like VS Code

© Heinz Nixdorf Institut / Fraunhofer IEM24

How to debug your code?

 Set break-points right before the code of interest

 Multiple break-points can be set

 ‘Watch’ variables of interest

 Step through the code

 Detect where it goes wrong

 Fix the bug

 Check the fix

© Heinz Nixdorf Institut / Fraunhofer IEM25
[Figure taken from https://www.linkedin.com/pulse/debug-your-code-easy-way-sanette-tanaka-1]

How to debug your code?

 Compile your code with –g

-g Produce debugging information in the operating system's native

format (stabs, COFF, XCOFF, or DWARF 2). GDB can work with this

debugging information.

[…]

GCC allows you to use -g with -O. The shortcuts taken by optimized

code may occasionally produce surprising results: some variables

you declared may not exist at all; flow of control may briefly move

where you did not expect it; some statements may not be executed

because they compute constant results or their values are already

at hand; some statements may execute in different places because

they have been moved out of loops.

Nevertheless it proves possible to debug optimized output. This

makes it reasonable to use the optimizer for programs that might

have bugs.

[…]

© Heinz Nixdorf Institut / Fraunhofer IEM26

How to debug your code using VS Code?

© Heinz Nixdorf Institut / Fraunhofer IEM27

© Heinz Nixdorf Institut / Fraunhofer IEM28

© Heinz Nixdorf Institut / Fraunhofer IEM29

© Heinz Nixdorf Institut / Fraunhofer IEM30

What next?

 Use C++ in your projects

 Get more experience

 Be curious

 Make mistakes

 Take your time

 C++ is huge

 Reads books, blog articles, programming forums

 Learn the tools used in professional software development

 Build tools e.g. make, cmake, …

 Debuggers e.g. gdb, lldb

 Tools from the compiler tool chain e.g. nm

 Version control systems e.g. git (https://git.cs.upb.de)

© Heinz Nixdorf Institut / Fraunhofer IEM31

https://git.cs.upb.de/

Thank you
very much!

 At the end, I hope that you find C++ somewhat useful!

© Heinz Nixdorf Institut / Fraunhofer IEM32

Thank you for your attention
Questions?

