
!

C++ PROGRAMMING

Lecture 3

Secure Software Engineering Group

Philipp Dominik Schubert

CONTENTS

1. Unions

2. Enumerations

3. Structures

4. Classes

5. Organizing C++ project’s

6. More on C/C++ compiler toolchains

7. Namespaces

© Heinz Nixdorf Institut / Fraunhofer IEM2

Note on this and the next lecture

 C++ can get complicated very quickly (and in this and the next lecture it will!)

 Do not be frustrated

 Understanding takes some time

 “Complicated” mechanisms are the price for C++’s power

 All those mechanism are cleverly designed

 Steps of learning new things

1. This is awesome!

2. This is tricky!

3. This is crap!

4. I am crap!

5. This might be okay!

6. This is awesome!

© Heinz Nixdorf Institut / Fraunhofer IEM3

Union

© Heinz Nixdorf Institut / Fraunhofer IEM5

 Store information that …

 share the same memory

 are alternatives to each other

 has the size of its largest data member

 Only one member can be used at a time

 You better know which one!

 Useful if memory is very limited

Union

 Example

union CID {

char c;

int i;

double d;

};

 What size would CID be?

 Size is 8 bytes (on most modern machines)

 Check with sizeof(CID) when in doubt

 I never used a union in my life!

 If possible, use std::variant instead

 #include <variant>

 std::variant also stores what alternative is currently valid

 Usage

int main() {

CID x;

x.c = 'A';

std::cout << x.c << '\n';
x.i = 100;

std::cout << x.i << '\n';
x.d = 3.14;

std::cout << x.d << '\n';
// don’t do that

x.i = 123456789;

std::cout << x.c << '\n'; // non-sense
return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM6

Union – a better alternative

 Use std::variant instead

#include <iostream>

#include <variant>

int main() {

std::variant<int, double> v = 42;

v = 123.456;

if (std::holds_alternative<double>(v)) {

std::cout << "'v' stores a double with value: " << std::get<double>(v)

<< '\n';

} else {

std::cout << "'v' stores an int with value: " << std::get<int>(v) << '\n';

}

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM7

Enum

 Used to store a bunch of states

 A machine might be ´on´ or ´off´

 A traffic light has colors ´green´, ´yellow´ and ´red´

 How to store this in an understandable manner?

 Example

 How to model a machine that can be in state ´on´ or ´off´

bool machine_state = true;

 And if there are many states?

int current_state = 21;

 Not very meaningful nor readable

© Heinz Nixdorf Institut / Fraunhofer IEM8

Enum

 Enum - enumerations allow for introducing meaningful states

 Machine state

enum MachineState { ON, OFF };

MachineState ms = ON;

MachineState other_machine = OFF;

 Meaningful and efficient

 Compiler internally stores states as int

 Compiler keeps track of enum members and corresponding int values

 Compiler starts enumerating at 0, unless you tell it otherwise

9

Enum

enum MachineState { ON, OFF };

MachineState ms = ON;

MachineState other_machine = OFF;

 Compiler starts enumerating at 0, unless you tell otherwise

std::cout << ON << '\n'; // prints 0

std::cout << OFF << '\n'; // prints 1

 A traffic light might look like

enum TrafficLight { GREEN, YELLOW, RED };

© Heinz Nixdorf Institut / Fraunhofer IEM
10

Enum

 If compiler should use another enumeration

 Use

enum TrafficLight { GREEN=42, YELLOW, RED };

 GREEN is 42 internally, YELLOW is 43 and RED is 44

 This is possible as well

enum TrafficLight { GREEN=100, YELLOW=12, RED=4 };

 Stick to the default unless you have reason to do otherwise

© Heinz Nixdorf Institut / Fraunhofer IEM
11

Enum

 Enumerations have one problem

 Namespace pollution

 Example

#include <vector>

using namespace std;

enum Types { vector, other };

int main() {

vector<int> v(10);

return 0;

}

 Refrain from using namespace

 Error message (using g++)

pollution.cpp: In function ‘int main()’:

pollution.cpp:7:2: error: reference to ‘vector’ is ambiguous

vector<int> v(10);

^

pollution.cpp:4:18: note: candidates are: Types vector

enum Types { vector, other };

^

In file included from /usr/include/c++/5/vector:64:0,

from pollution.cpp:1:

/usr/include/c++/5/bits/stl_vector.h:214:11: note:
template<class _Tp, class _Alloc> class std::vector

class vector : protected _Vector_base<_Tp, _Alloc>

^

pollution.cpp:7:9: error: expected primary-expression before ‘int’

vector<int> v(10);

^

© Heinz Nixdorf Institut / Fraunhofer IEM12

Enum

 There is a solution

 Use enum class aka scoped enums

 These enums are only visible in a certain
scope

 Provides type safety

 Introduced in C++11

#include <iostream>

#include <vector>

using namespace std;

enum class Types { vector, other };

int main() {

vector<int> v(10);

// this vector lives in the

// scope Types

Types type = Types::vector;

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM13

Enum

 “Problem”

 Due to type safety there is no implicit conversion to int

std::cout << Types::vector << '\n';

 You cannot print the states that easily

 If you want to print a scoped enum use

 C++11

static_cast<typename underlying_type<Types>::type>(type)

 C++14

static_cast<underlying_type_t<Types>>(type)

© Heinz Nixdorf Institut / Fraunhofer IEM14

Enum – insider information

#include <iostream>

#include <string>

#include "llvm/ADT/StringSwitch.h"

enum class State {

#define STATE_DEF(NAME, TYPE) TYPE,

#include "enum-definition.def"

};

std::string toString(const State &S) {

switch (S) {

default:

#define STATE_DEF(NAME, TYPE) \

case State::TYPE: \

return NAME; \

break;

#include "enum-definition.def"

}

}

State toState(const std::string &Str) {

State S = llvm::StringSwitch<State>(Str)

#define STATE_DEF(NAME, TYPE) .Case(NAME, State::TYPE)

#include "enum-definition.def"

.Default(State::Error);

return S;

}

std::ostream &operator<<(std::ostream &OS, const State &D) {

return OS << toString(D);

}

int main() {

State S = State::A;

State T = State::B;

std::cout << "S's state is: " << S << '\n';

State U = toState("C");

State V = toState("Blah!");

std::cout << "V's state is: " << V << '\n';

if (S == T) {

std::cout << "S and T carry the same state!\n";

}

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM15

#ifndef STATE_DEF

#define STATE_DEF(NAME, TYPE)

#endif

STATE_DEF("A", A)

STATE_DEF("B", B)

STATE_DEF("C", C)

STATE_DEF("D", D)

STATE_DEF("ERROR", Error)

#undef STATE_DEF

 Generate code at compile time based on a definition file

enum-definition.def

User defined / non-built-in types with struct

 struct lets you define your own data type

 Define a struct that stores information about a person

struct Person {

std::string name;

std::string surname;

unsigned age;

};

1. A variable inside a struct is also called a data member, member variable or field

2. A function inside a struct is called a function member or member function

3. Data or functions inside a struct can be accessed with . (point operator)

Person peter;

peter.name = "Peter";

peter.surname = "Griffin";

peter.age = 41;

std::cout << peter.age << '\n';

© Heinz Nixdorf Institut / Fraunhofer IEM16

User defined types with struct

struct Person {

std::string name;

std::string surname;

unsigned age;

};

 Data inside a struct can be accessed with .
(point operator)

 This is tedious!

 Users of Person might forget to initialize one
of the data members

 Is there a more clever way to create a variable and
initialize it?

 Use constructors

 Create a variable of type Person and store some
data in that variable

Person peter;

peter.name = "Peter";

peter.surname = "Griffin";

peter.age = 41;

© Heinz Nixdorf Institut / Fraunhofer IEM17

Special member functions

struct Person {

std::string name;

std::string surname;

unsigned age;

};

 Is there a more clever way of getting data into a variable of type person?

 Again take a deep breath

 Person already contains special member functions that you cannot see

 If not defined by the user, the compiler generates them for you as required

 This only works here because we are using built-in and STL data types
(std::string/unsigned)

© Heinz Nixdorf Institut / Fraunhofer IEM18

Special member functions

struct Person {

std::string name;

std::string surname;

unsigned age;

};

 The special member functions are:

 Constructor(s) // is executed when creating a variable, there may be more than one ctor

 Destructor // is executed when object is no longer in use/out-of-scope (is destroyed)

 Copy-constructor // is executed when object is copied (remember parameter passing)

 Move-constructor // is executed when object is moved (remember returning data from function)

 Copy-assignment-operator // is executed when object is copied via = (see copy constructor)

 Move-assignment-operator // is executed when object is moved via = (see move constructor)

© Heinz Nixdorf Institut / Fraunhofer IEM19

User defined types with struct

struct Person {

std::string name;

std::string surname;

unsigned age;

};

 Why does it have to be so complicated?

 Goal: make user-defined-types feel like built-in types to developers (e.g. default parameter passing: copy)

 It will become clear in time!

 C++ uses the RAII concept

 “Resource acquisition is initialization”

 When a variable of user-defined type is introduced, C++ has to ensure that …

A. A concrete instance of that type will be created (acquire resources, e.g. memory)

B. It will be initialized correctly

© Heinz Nixdorf Institut / Fraunhofer IEM20

Constructor

 Writing a constructor

struct Person {

Person(std::string n, std::string sn, unsigned a)

: name(n), surname(sn), age(a) {

std::cout << "ctor\n";

}

std::string name;

std::string surname;

unsigned age;

};

 A constructor’s name is the type’s name

 The following code fails now

Person peter; // there is no such constructor

 A variable of type person can now only be created via: Person peter("Peter", "Griffin", 41);

© Heinz Nixdorf Institut / Fraunhofer IEM21

Constructor

Person peter("Peter", "Griffin", 41);

 This calls the constructor which does its job and initializes the data members

 name

 surname

 age

 It also prints "ctor"

 Users of type Person cannot fail to initialize variables of that type correctly

 That is exactly what we wanted!

© Heinz Nixdorf Institut / Fraunhofer IEM22

Destructor

 Writing a destructor

struct Person {

Person(std::string n, std::string sn, unsigned a)

: name(n), surname(sn), age(a) {

std::cout << "ctor\n";

}

~Person() { std::cout << "dtor\n"; }

std::string name;

std::string surname;

unsigned age;

};

 A destructor’s name is the struct name but starts with ~ “anti-constructor”

 The destructor does the clean up when the variable is no longer needed

 Users of type Person cannot fail to clean up the data!

© Heinz Nixdorf Institut / Fraunhofer IEM23

Ctor and dtor

 Now assume this program

int main() {

Person peter("Peter", "Griffin", 41); // ctor called

// do some stuff with peter

return 0; // dtor is called here, because the variable goes out of scope!

}

 Constructor and destructor act as a universal “do” and “undo” mechanism!

© Heinz Nixdorf Institut / Fraunhofer IEM24

Copy constructor

 Writing a copy constructor

struct Person {

Person(std::string n, std::string sn, unsigned a)

: name(n), surname(sn), age(a){

std::cout << "ctor\n";

}

~Person() { std::cout << "dtor\n"; }

Person(const Person& p) = default;

std::string name;

std::string surname;

unsigned age;

};

 Again: same name as the struct and receives
one argument as shown on the left-hand side

 Because Person only contains value and STL data
types, we don´t need to write a copy ourselves

 Compiler knows how to copy such types

 Omit a definition or better: mark as default

 This will change when we use dynamic
memory allocation (next lecture)

© Heinz Nixdorf Institut / Fraunhofer IEM25

Copy constructor

 Peter can be copied!

void someFunction(Person p) {

// do useful stuff;

// dtor called for p

}

int main() {

Person peter("Peter", "Griffin", 41); // ctor called

Person clone(peter); // copy called

someFunction(peter); // copy called

// do some stuff with peter and clone

return 0; // dtor is called for peter and for clone

}

© Heinz Nixdorf Institut / Fraunhofer IEM26

Copy assignment operator

 The copy assignment operator
receives one argument as shown on
the left-hand side

 Because Person only contains value
and STL data types, we don´t need
to write a copy ourselves

 Compiler knows how to copy
such types

 Just set it to default

 This will change when we work
with dynamic memory
allocation (next lecture)

© Heinz Nixdorf Institut / Fraunhofer IEM27

 Writing a copy-assignment operator

struct Person {

Person(std::string n, std::string sn, unsigned a)

: name(n), surname(sn), age(a) {

std::cout << "ctor\n";

}

~Person() { std::cout << "dtor\n"; }

Person(const Person& p) = default;

Person& operator= (const Person& p) = default;

std::string name;

std::string surname;

unsigned age;

};

Copy assignment operator

 Now a Person can be copied via =

int main() {

Person peter("Peter", "Griffin", 41); // ctor called

Person chris("Chris", "Griffin", 15); // ctor called

chris = peter; // copy assign called

// chris now contains the same data as peter

// do some other stuff

return 0; // dtor is called for peter and for chris

}

© Heinz Nixdorf Institut / Fraunhofer IEM28

Move constructor

 Writing a move constructor

struct Person {

Person(std::string n, std::string sn, unsigned a)

: name(n), surname(sn), age(a) {

std::cout << "ctor\n";

}

~Person() { std::cout << "dtor\n"; }

Person(const Person& p) = default;

Person& operator= (const Person& p) =default;

Person(Person&& p) = default;

std::string name;

std::string surname;

unsigned age;

};

 Move constructor’s name is struct name,
receives one argument as shown on left-
hand side

 It receives a so-called rvalue reference!

 A temporary value that has “no
address”

 unsigned age = 42;

 42 has no address, it is a temporary

 Because Person only contains value and
STL data types, we don´t need to write a
move ourselves

 Compiler knows how to move such types

 Just set it to default

 This will change when we work with
dynamic memory allocation (next
lecture

© Heinz Nixdorf Institut / Fraunhofer IEM29

Move constructor

 Now a Person can be move constructed

Person someFunction() { Person p("Some", "Guy", 30); return p; }

int main() {

Person peter("Peter", "Griffin", 41); // ctor called

Person chris(std::move(peter)); // move called

// peter can't be used at this point any more!

std::cout << chris.name << '\n';

Person guy(someFunction()); // move called

return 0; // dtor is called for peter, chris, and guy

}

 A person can now be moved

 We steal it’s data!

 Sometimes move can replace copy (e.g. when returning a value from a function)

 This is will become important when user-defined-types use dynamic memory allocation

 Almost no overhead (or even no overhead at all, if the compiler is smart enough)

© Heinz Nixdorf Institut / Fraunhofer IEM30

Move assignment operator

 Writing a move assignment operator

struct Person {

Person(string n, string sn, unsigned a)

: name(n), surname(sn), age(a) {

std::cout << "ctor\n";

}

~Person() { std::cout << "dtor\n"; }

Person(const Person& p) = default;

Person& operator= (const Person& p) = default;

Person(Person&& p) = default;

Person& operator= (Person&& p) = default;

std::string name;

std::string surname;

unsigned age;

};

 Just set it to default

© Heinz Nixdorf Institut / Fraunhofer IEM31

Move assignment operator

 Now a Person can be moved using the assignment operator

int main() {

Person peter("Peter", "Griffin", 41); // ctor called

Person chris ("Chris", "Griffin", 14); // ctor called

chris = std::move(peter); // move assignment called

// peter can't be used at this point any more!

std::cout << chris << '\n';

return 0; // dtor is called for peter and chris

}

 A person can now be moved using the assignment operator

© Heinz Nixdorf Institut / Fraunhofer IEM32

User defined types with struct

 Does one really have to bother with all those special member functions for such a simple struct?

 No!

 We started with

struct Person {

std::string name;

std::string surname;

unsigned age;

};

 Note: the compiler can generate all this constructor madness for POD (“plain old data”) types automatically

 A POD is a struct or class that only contains built-in data types

 Compiler knows how built-in (and STL types) have to be constructed, destructed, copied and
moved!

 But: All this will become necessary for types that use dynamic memory allocation

© Heinz Nixdorf Institut / Fraunhofer IEM33

Our final types

 Make your wish for compiler generated constructors and assignments explicit!

 You get an error message if the compiler can’t do it

struct Person {

std::string name;

std::string surname;

unsigned age;

Person(std::string n, std::string sn, unsigned a) : name(n), surname(sn), age(a) {}

~Person() = default;

Person(const Person& p) = default;

Person& operator= (const Person&p) = default;

Person(Person&& p) = default;

Person& operator= (Person&& p) = default;

};

 Note: since C++11 you can initialize built-in types like non-built-in types (constructor-like)!

Person p("Peter", "Griffin", 45); int i(42); double d(1.234);

Person p{"Peter", "Griffin", 45}; int i{42}; double d{1.234};

© Heinz Nixdorf Institut / Fraunhofer IEM34

 Note: one can also delete certain special member functions!

 Use keyword delete

Person(const Person& p) = delete; // copy not allowed

Class

 Remember struct

 Structs store a bunch of data

 Data members

 Have special member functions

 Can have further member functions

 Members (data and functions) can be
accessed via . (point operator)

 Important

 Users can access all members from
the outside

 Everything is public: data is interface

 Example

struct Vec3 {

double x;

double y;

double z;

};

Vec3 v;

v.x = 1;

v.y = 2;

v.z = 3;

© Heinz Nixdorf Institut / Fraunhofer IEM35

Class

 Example

struct Vec3 {

double x;

double y;

private:

double z;

};

Vec3 v;

v.x = 1;

v.y = 2;

v.z = 3; // error: x is private

© Heinz Nixdorf Institut / Fraunhofer IEM36

 Remember struct

 All members are public be default

 But you can make them private nevertheless

 Usually you don’t want to that for structs!

Class

 Classes allow separation of data and interface

 Consider

struct Vec3 {

double x;

double y;

double z;

};

and

class Vec3 {

public:

double x;

double y;

double z;

};

 Here there is no difference

 Exact same behavior

 Notice keyword public

 What other keyword might exist?

 private

 protected // later on

© Heinz Nixdorf Institut / Fraunhofer IEM37

Class

 Classes allow separation of data and interface

 Example

class Vec3 {

private:

double x;

double y;

double z;

};

 Usage

Vec3 v;

v.x = 1; // error: x is declared

private member

v.y = 1; // error: x is declared

private member

v.z = 1; // error: x is declared

private member

 How useful is that?

 We locked ourselves out!

© Heinz Nixdorf Institut / Fraunhofer IEM38

Class

 Classes allow separation of data and interface

 But wait, let’s provide some functionality

class Vec3 {

private:

double x;

double y;

double z;

public:

constexpr Vec3(double x, double y, double z) : x(x), y(y), z(z) {}

constexpr size_t size() { return 3; }

};

© Heinz Nixdorf Institut / Fraunhofer IEM39

 Usage

Vec3 v(1.1, 2.2, 3.3)

size_t vssize = v.size();

 Now we can access Vec3’s constructor

 And the member function size()

 Let’s add some more functionality!

Class

 Provide some more functionality

class Vec3 {

private:

double x;

double y;

double z;

public:

constexpr Vec3() : x(0), y(0), z(0) {}

constexpr Vec3(double x, double y, double z) : x(x), y(y), z(z) {}

constexpr size_t size() { return 3; }

constexpr double euclidean_length() { return std::sqrt(x * x + y * y + z * z); }

friend std::ostream& operator<< (std::ostream& os, const Vec3& v) {

return os << v.x << " " << v.y << " " << v.z;

}

};

© Heinz Nixdorf Institut / Fraunhofer IEM40

 Example usage of Vec3

int main() {

Vec3 v(1,2,3);

// print its data

std::cout << v << '\n';

// print its length

std::cout << "euclidean_len: "

<< v.euclidean_length() << '\n';

// print its size

std::cout << "size: " << v.size() << '\n';

return 0;

}

Class

class Vec3 {

private:

double x;

double y;

double z;

public:

Vec3() : x(0), y(0), z(0) {}

Vec3(double x, double y, double z) : x(x), y(y), z(z) {}

size_t size() { return 3; }

double euclidean_length() {

return sqrt(x * x + y * y + z * z);

}

friend std::ostream& operator<< (std::ostream& os, const Vec3& v) {

return os << v.x << " " << v.y << " " << v.z;

}

};

© Heinz Nixdorf Institut / Fraunhofer IEM41

Class

 Struct

 Data is interface

 Class

 Distinction between data and interface

 Data can only be manipulated through well defined interface!

 Make user-defined types easy and safe to use

 Only difference between struct and class is the default visibility

 struct is public by default

 class is private by default

© Heinz Nixdorf Institut / Fraunhofer IEM42

Class vs Struct

 If there is no difference, when to use what?

 Structs

 Use structs for PODs (“plain old data”)

 Use member functions as shorthands

 For simple data types

 E.g. modelling a point comprising two coordinates

 There are not many ways how to misuse a simple point

 Classes

 Use classes for non-PODs

 More sophisticated data types

 Modelling a mathematical vector with more complex operations

 Graph types, etc.

© Heinz Nixdorf Institut / Fraunhofer IEM43

How to organize a C++ project?

 C++ allows for separation of code into header and implementation files (unlike Java)

 For logical related code …

 that is …

1. a collection of functions designed for a specific purpose

2. a user defined type (that may contains member functions) (struct or class)

 put function declarations and / or type declarations in a header file (ending “.h”)

 Do not forget the include guards

 put the (member) function / global variable definitions in an implementation file (ending “.cpp”)

 This allows separate compilation of implementation files / modules!

 A compiled implementation file / module results in an object file (ending “.o”)

 Object files contain machine code, but may contain unresolved references (e.g. function calls)

 The linker links all object files, resolves all references and produces an executable program

© Heinz Nixdorf Institut / Fraunhofer IEM44

© Heinz Nixdorf Institut / Fraunhofer IEM45

File: Vec3.cpp
#include "Vec3.h"

#include <iostream>

void freeFunction() {/* def */}

int value = 42;

Vec3::Vec3() : x(0), y(0), z(0) {};

Vec3::Vec3(double x,

double y,

double z)

: x(x), y(y), z(z) {};

size_t Vec3::size() { return 3; }

double Vec3::euclidean_length() {

return sqrt(x * x + y * y + z * z);

}

std::ostream& operator<< (

std::ostream& os,

const Vec3& v) {

os << v.x <<" "<< v.y <<" "<< v.z;

}

File: Vec3.h
#ifndef VEC3_H_

#define VEC3_H_

#include <iostream>

void freeFunction();

extern int value;

class Vec3 {

private:

double x;

double y;

double z;

public:

Vec3();

Vec3(double,double,double);

size_t size();

double euclidean_length();

friend std::ostream&

operator<< (

std::ostream& os,

const Vec3& v);

};

#endif

File: main.cpp

#include <iostream>

#include "Vec3.h"

int main() {

freeFunction();

std::cout << value << '\n';

Vec3 v(10, 20, 30);

std::cout << v << '\n';

std::cout << v.size() << '\n';
std::cout <<

v.veuclidean_length() << '\n';
return 0;

}

 Each .cpp file can be compiled

separately into an .o file

 Once all sources have been
compiled, linker links all .o files

(and external libraries) into an

executable program

How to organize a C++ project?

How to organize a C++ project?

 Header files are only included but never compiled

 Implementation files are typically compiled and linked separately

 Option A (your homework)

$ clang++ -std=c++17 –Wall –Wextra Vec3.cpp main.cpp –o main

 Option B (real C/C++ projects)

$ clang++ -std=c++17 –Wall –Wextra –c Vec3.cpp

$ clang++ -std=c++17 –Wall –Wextra –c main.cpp

$ clang++ -std=c++17 –Wall –Wextra Vec3.o main.o –o main

 Realistic projects would use build systems such as Makefile, CMake, etc.

 Build systems allow developers to encode how a project has to be build

 Project/

 main.cpp

 Vec3.h

 Vec3.cpp

© Heinz Nixdorf Institut / Fraunhofer IEM46

Language-processing system revisited

 A few programs from this language-processing system (Linux)

 cpp – the c preprocessor

 g++ or clang++ – a C++ compiler

 as – a assembler

 nm – a tool to list symbols defined in object files

 ld – a linker

 Usually a C++ compiler calls all those programs for you

47

More on C/C++ compiler toolchains

 Use tools to automatically improve your code

 “Everything in C++ is hard”

 Even simple code formatting is hard (e.g. preprocessor macros later on)

 Powerful and clever tools are required

 Clang/LLVM provides (AST-based) tools for managing large code bases

 clang-format

 formats code

 format can be specified by a configuration file

 clang-tidy

 analysis and transformation tool

 automatically improves and modernizes code

 parameterized by a configuration file

 and many more …

© Heinz Nixdorf Institut / Fraunhofer IEM48

 I uploaded some exemplary project
and configurations files and give
some examples on how to use them
in the exercise class(es)

 You are welcome to use those tools!

© Heinz Nixdorf Institut / Fraunhofer IEM49

File: Vec3.cpp
#include <iostream>

#include "Vec3.h"

namespace first {

void foo(){ std::cout << "first"; }

} // namespace first

namespace second {

void foo(){ std::cout << "second";}

Vec3::Vec3() {};

Vec3::Vec3(double x,

double y,

double z)

: x(x), y(y), z(z) {};

size_t Vec3::size() { return 3; }

double Vec3::euclidean_length() {

return sqrt(x * x + y * y + z * z);

}

} // namespace second

File: Vec3.h

#ifndef VEC3_H_

#define VEC3_H_

namespace first {

void foo();

} // namespace first

namespace second {

void foo();

class Vec3 {

private:

double x;

double y;

double z;

public:

Vec3();

Vec3(double,double,double);

constexpr size_t size();

double euclidean_length();

};

} // namespace second

#endif

File: main.cpp

#include <iostream>

#include "Vec3.h"

int main() {

frist::foo();

second::foo();

second::Vec3 v(10, 20, 30);

std::cout << v.size() << '\n';
return 0;

}

Namespaces

 Avoid name clashes

 Please refrain from using
using namespace std;

 A namespace can be defined in
several parts of a project

 Namespaces can be nested

Recap

 Union

 Enum and enum class

 Struct

 Special member functions

 Class

 Struct versus Class

 How to organize a C++ project

 Language-processing system revisited

 Namespaces

© Heinz Nixdorf Institut / Fraunhofer IEM50

Thank you for your attention
Questions?

