
!

C++ PROGRAMMING

Lecture 3

Secure Software Engineering Group

Philipp Dominik Schubert

CONTENTS

1. Unions

2. Enumerations

3. Structures

4. Classes

5. Organizing C++ project’s

6. More on C/C++ compiler toolchains

7. Namespaces

© Heinz Nixdorf Institut / Fraunhofer IEM2

Note on this and the next lecture

 C++ can get complicated very quickly (and in this and the next lecture it will!)

 Do not be frustrated

 Understanding takes some time

 “Complicated” mechanisms are the price for C++’s power

 All those mechanism are cleverly designed

 Steps of learning new things

1. This is awesome!

2. This is tricky!

3. This is crap!

4. I am crap!

5. This might be okay!

6. This is awesome!

© Heinz Nixdorf Institut / Fraunhofer IEM3

Union

© Heinz Nixdorf Institut / Fraunhofer IEM5

 Store information that …

 share the same memory

 are alternatives to each other

 has the size of its largest data member

 Only one member can be used at a time

 You better know which one!

 Useful if memory is very limited

Union

 Example

union CID {

char c;

int i;

double d;

};

 What size would CID be?

 Size is 8 bytes (on most modern machines)

 Check with sizeof(CID) when in doubt

 I never used a union in my life!

 If possible, use std::variant instead

 #include <variant>

 std::variant also stores what alternative is currently valid

 Usage

int main() {

CID x;

x.c = 'A';

std::cout << x.c << '\n';
x.i = 100;

std::cout << x.i << '\n';
x.d = 3.14;

std::cout << x.d << '\n';
// don’t do that

x.i = 123456789;

std::cout << x.c << '\n'; // non-sense
return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM6

Union – a better alternative

 Use std::variant instead

#include <iostream>

#include <variant>

int main() {

std::variant<int, double> v = 42;

v = 123.456;

if (std::holds_alternative<double>(v)) {

std::cout << "'v' stores a double with value: " << std::get<double>(v)

<< '\n';

} else {

std::cout << "'v' stores an int with value: " << std::get<int>(v) << '\n';

}

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM7

Enum

 Used to store a bunch of states

 A machine might be ´on´ or ´off´

 A traffic light has colors ´green´, ´yellow´ and ´red´

 How to store this in an understandable manner?

 Example

 How to model a machine that can be in state ´on´ or ´off´

bool machine_state = true;

 And if there are many states?

int current_state = 21;

 Not very meaningful nor readable

© Heinz Nixdorf Institut / Fraunhofer IEM8

Enum

 Enum - enumerations allow for introducing meaningful states

 Machine state

enum MachineState { ON, OFF };

MachineState ms = ON;

MachineState other_machine = OFF;

 Meaningful and efficient

 Compiler internally stores states as int

 Compiler keeps track of enum members and corresponding int values

 Compiler starts enumerating at 0, unless you tell it otherwise

9

Enum

enum MachineState { ON, OFF };

MachineState ms = ON;

MachineState other_machine = OFF;

 Compiler starts enumerating at 0, unless you tell otherwise

std::cout << ON << '\n'; // prints 0

std::cout << OFF << '\n'; // prints 1

 A traffic light might look like

enum TrafficLight { GREEN, YELLOW, RED };

© Heinz Nixdorf Institut / Fraunhofer IEM
10

Enum

 If compiler should use another enumeration

 Use

enum TrafficLight { GREEN=42, YELLOW, RED };

 GREEN is 42 internally, YELLOW is 43 and RED is 44

 This is possible as well

enum TrafficLight { GREEN=100, YELLOW=12, RED=4 };

 Stick to the default unless you have reason to do otherwise

© Heinz Nixdorf Institut / Fraunhofer IEM
11

Enum

 Enumerations have one problem

 Namespace pollution

 Example

#include <vector>

using namespace std;

enum Types { vector, other };

int main() {

vector<int> v(10);

return 0;

}

 Refrain from using namespace

 Error message (using g++)

pollution.cpp: In function ‘int main()’:

pollution.cpp:7:2: error: reference to ‘vector’ is ambiguous

vector<int> v(10);

^

pollution.cpp:4:18: note: candidates are: Types vector

enum Types { vector, other };

^

In file included from /usr/include/c++/5/vector:64:0,

from pollution.cpp:1:

/usr/include/c++/5/bits/stl_vector.h:214:11: note:
template<class _Tp, class _Alloc> class std::vector

class vector : protected _Vector_base<_Tp, _Alloc>

^

pollution.cpp:7:9: error: expected primary-expression before ‘int’

vector<int> v(10);

^

© Heinz Nixdorf Institut / Fraunhofer IEM12

Enum

 There is a solution

 Use enum class aka scoped enums

 These enums are only visible in a certain
scope

 Provides type safety

 Introduced in C++11

#include <iostream>

#include <vector>

using namespace std;

enum class Types { vector, other };

int main() {

vector<int> v(10);

// this vector lives in the

// scope Types

Types type = Types::vector;

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM13

Enum

 “Problem”

 Due to type safety there is no implicit conversion to int

std::cout << Types::vector << '\n';

 You cannot print the states that easily

 If you want to print a scoped enum use

 C++11

static_cast<typename underlying_type<Types>::type>(type)

 C++14

static_cast<underlying_type_t<Types>>(type)

© Heinz Nixdorf Institut / Fraunhofer IEM14

Enum – insider information

#include <iostream>

#include <string>

#include "llvm/ADT/StringSwitch.h"

enum class State {

#define STATE_DEF(NAME, TYPE) TYPE,

#include "enum-definition.def"

};

std::string toString(const State &S) {

switch (S) {

default:

#define STATE_DEF(NAME, TYPE) \

case State::TYPE: \

return NAME; \

break;

#include "enum-definition.def"

}

}

State toState(const std::string &Str) {

State S = llvm::StringSwitch<State>(Str)

#define STATE_DEF(NAME, TYPE) .Case(NAME, State::TYPE)

#include "enum-definition.def"

.Default(State::Error);

return S;

}

std::ostream &operator<<(std::ostream &OS, const State &D) {

return OS << toString(D);

}

int main() {

State S = State::A;

State T = State::B;

std::cout << "S's state is: " << S << '\n';

State U = toState("C");

State V = toState("Blah!");

std::cout << "V's state is: " << V << '\n';

if (S == T) {

std::cout << "S and T carry the same state!\n";

}

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM15

#ifndef STATE_DEF

#define STATE_DEF(NAME, TYPE)

#endif

STATE_DEF("A", A)

STATE_DEF("B", B)

STATE_DEF("C", C)

STATE_DEF("D", D)

STATE_DEF("ERROR", Error)

#undef STATE_DEF

 Generate code at compile time based on a definition file

enum-definition.def

User defined / non-built-in types with struct

 struct lets you define your own data type

 Define a struct that stores information about a person

struct Person {

std::string name;

std::string surname;

unsigned age;

};

1. A variable inside a struct is also called a data member, member variable or field

2. A function inside a struct is called a function member or member function

3. Data or functions inside a struct can be accessed with . (point operator)

Person peter;

peter.name = "Peter";

peter.surname = "Griffin";

peter.age = 41;

std::cout << peter.age << '\n';

© Heinz Nixdorf Institut / Fraunhofer IEM16

User defined types with struct

struct Person {

std::string name;

std::string surname;

unsigned age;

};

 Data inside a struct can be accessed with .
(point operator)

 This is tedious!

 Users of Person might forget to initialize one
of the data members

 Is there a more clever way to create a variable and
initialize it?

 Use constructors

 Create a variable of type Person and store some
data in that variable

Person peter;

peter.name = "Peter";

peter.surname = "Griffin";

peter.age = 41;

© Heinz Nixdorf Institut / Fraunhofer IEM17

Special member functions

struct Person {

std::string name;

std::string surname;

unsigned age;

};

 Is there a more clever way of getting data into a variable of type person?

 Again take a deep breath

 Person already contains special member functions that you cannot see

 If not defined by the user, the compiler generates them for you as required

 This only works here because we are using built-in and STL data types
(std::string/unsigned)

© Heinz Nixdorf Institut / Fraunhofer IEM18

Special member functions

struct Person {

std::string name;

std::string surname;

unsigned age;

};

 The special member functions are:

 Constructor(s) // is executed when creating a variable, there may be more than one ctor

 Destructor // is executed when object is no longer in use/out-of-scope (is destroyed)

 Copy-constructor // is executed when object is copied (remember parameter passing)

 Move-constructor // is executed when object is moved (remember returning data from function)

 Copy-assignment-operator // is executed when object is copied via = (see copy constructor)

 Move-assignment-operator // is executed when object is moved via = (see move constructor)

© Heinz Nixdorf Institut / Fraunhofer IEM19

User defined types with struct

struct Person {

std::string name;

std::string surname;

unsigned age;

};

 Why does it have to be so complicated?

 Goal: make user-defined-types feel like built-in types to developers (e.g. default parameter passing: copy)

 It will become clear in time!

 C++ uses the RAII concept

 “Resource acquisition is initialization”

 When a variable of user-defined type is introduced, C++ has to ensure that …

A. A concrete instance of that type will be created (acquire resources, e.g. memory)

B. It will be initialized correctly

© Heinz Nixdorf Institut / Fraunhofer IEM20

Constructor

 Writing a constructor

struct Person {

Person(std::string n, std::string sn, unsigned a)

: name(n), surname(sn), age(a) {

std::cout << "ctor\n";

}

std::string name;

std::string surname;

unsigned age;

};

 A constructor’s name is the type’s name

 The following code fails now

Person peter; // there is no such constructor

 A variable of type person can now only be created via: Person peter("Peter", "Griffin", 41);

© Heinz Nixdorf Institut / Fraunhofer IEM21

Constructor

Person peter("Peter", "Griffin", 41);

 This calls the constructor which does its job and initializes the data members

 name

 surname

 age

 It also prints "ctor"

 Users of type Person cannot fail to initialize variables of that type correctly

 That is exactly what we wanted!

© Heinz Nixdorf Institut / Fraunhofer IEM22

Destructor

 Writing a destructor

struct Person {

Person(std::string n, std::string sn, unsigned a)

: name(n), surname(sn), age(a) {

std::cout << "ctor\n";

}

~Person() { std::cout << "dtor\n"; }

std::string name;

std::string surname;

unsigned age;

};

 A destructor’s name is the struct name but starts with ~ “anti-constructor”

 The destructor does the clean up when the variable is no longer needed

 Users of type Person cannot fail to clean up the data!

© Heinz Nixdorf Institut / Fraunhofer IEM23

Ctor and dtor

 Now assume this program

int main() {

Person peter("Peter", "Griffin", 41); // ctor called

// do some stuff with peter

return 0; // dtor is called here, because the variable goes out of scope!

}

 Constructor and destructor act as a universal “do” and “undo” mechanism!

© Heinz Nixdorf Institut / Fraunhofer IEM24

Copy constructor

 Writing a copy constructor

struct Person {

Person(std::string n, std::string sn, unsigned a)

: name(n), surname(sn), age(a){

std::cout << "ctor\n";

}

~Person() { std::cout << "dtor\n"; }

Person(const Person& p) = default;

std::string name;

std::string surname;

unsigned age;

};

 Again: same name as the struct and receives
one argument as shown on the left-hand side

 Because Person only contains value and STL data
types, we don´t need to write a copy ourselves

 Compiler knows how to copy such types

 Omit a definition or better: mark as default

 This will change when we use dynamic
memory allocation (next lecture)

© Heinz Nixdorf Institut / Fraunhofer IEM25

Copy constructor

 Peter can be copied!

void someFunction(Person p) {

// do useful stuff;

// dtor called for p

}

int main() {

Person peter("Peter", "Griffin", 41); // ctor called

Person clone(peter); // copy called

someFunction(peter); // copy called

// do some stuff with peter and clone

return 0; // dtor is called for peter and for clone

}

© Heinz Nixdorf Institut / Fraunhofer IEM26

Copy assignment operator

 The copy assignment operator
receives one argument as shown on
the left-hand side

 Because Person only contains value
and STL data types, we don´t need
to write a copy ourselves

 Compiler knows how to copy
such types

 Just set it to default

 This will change when we work
with dynamic memory
allocation (next lecture)

© Heinz Nixdorf Institut / Fraunhofer IEM27

 Writing a copy-assignment operator

struct Person {

Person(std::string n, std::string sn, unsigned a)

: name(n), surname(sn), age(a) {

std::cout << "ctor\n";

}

~Person() { std::cout << "dtor\n"; }

Person(const Person& p) = default;

Person& operator= (const Person& p) = default;

std::string name;

std::string surname;

unsigned age;

};

Copy assignment operator

 Now a Person can be copied via =

int main() {

Person peter("Peter", "Griffin", 41); // ctor called

Person chris("Chris", "Griffin", 15); // ctor called

chris = peter; // copy assign called

// chris now contains the same data as peter

// do some other stuff

return 0; // dtor is called for peter and for chris

}

© Heinz Nixdorf Institut / Fraunhofer IEM28

Move constructor

 Writing a move constructor

struct Person {

Person(std::string n, std::string sn, unsigned a)

: name(n), surname(sn), age(a) {

std::cout << "ctor\n";

}

~Person() { std::cout << "dtor\n"; }

Person(const Person& p) = default;

Person& operator= (const Person& p) =default;

Person(Person&& p) = default;

std::string name;

std::string surname;

unsigned age;

};

 Move constructor’s name is struct name,
receives one argument as shown on left-
hand side

 It receives a so-called rvalue reference!

 A temporary value that has “no
address”

 unsigned age = 42;

 42 has no address, it is a temporary

 Because Person only contains value and
STL data types, we don´t need to write a
move ourselves

 Compiler knows how to move such types

 Just set it to default

 This will change when we work with
dynamic memory allocation (next
lecture

© Heinz Nixdorf Institut / Fraunhofer IEM29

Move constructor

 Now a Person can be move constructed

Person someFunction() { Person p("Some", "Guy", 30); return p; }

int main() {

Person peter("Peter", "Griffin", 41); // ctor called

Person chris(std::move(peter)); // move called

// peter can't be used at this point any more!

std::cout << chris.name << '\n';

Person guy(someFunction()); // move called

return 0; // dtor is called for peter, chris, and guy

}

 A person can now be moved

 We steal it’s data!

 Sometimes move can replace copy (e.g. when returning a value from a function)

 This is will become important when user-defined-types use dynamic memory allocation

 Almost no overhead (or even no overhead at all, if the compiler is smart enough)

© Heinz Nixdorf Institut / Fraunhofer IEM30

Move assignment operator

 Writing a move assignment operator

struct Person {

Person(string n, string sn, unsigned a)

: name(n), surname(sn), age(a) {

std::cout << "ctor\n";

}

~Person() { std::cout << "dtor\n"; }

Person(const Person& p) = default;

Person& operator= (const Person& p) = default;

Person(Person&& p) = default;

Person& operator= (Person&& p) = default;

std::string name;

std::string surname;

unsigned age;

};

 Just set it to default

© Heinz Nixdorf Institut / Fraunhofer IEM31

Move assignment operator

 Now a Person can be moved using the assignment operator

int main() {

Person peter("Peter", "Griffin", 41); // ctor called

Person chris ("Chris", "Griffin", 14); // ctor called

chris = std::move(peter); // move assignment called

// peter can't be used at this point any more!

std::cout << chris << '\n';

return 0; // dtor is called for peter and chris

}

 A person can now be moved using the assignment operator

© Heinz Nixdorf Institut / Fraunhofer IEM32

User defined types with struct

 Does one really have to bother with all those special member functions for such a simple struct?

 No!

 We started with

struct Person {

std::string name;

std::string surname;

unsigned age;

};

 Note: the compiler can generate all this constructor madness for POD (“plain old data”) types automatically

 A POD is a struct or class that only contains built-in data types

 Compiler knows how built-in (and STL types) have to be constructed, destructed, copied and
moved!

 But: All this will become necessary for types that use dynamic memory allocation

© Heinz Nixdorf Institut / Fraunhofer IEM33

Our final types

 Make your wish for compiler generated constructors and assignments explicit!

 You get an error message if the compiler can’t do it

struct Person {

std::string name;

std::string surname;

unsigned age;

Person(std::string n, std::string sn, unsigned a) : name(n), surname(sn), age(a) {}

~Person() = default;

Person(const Person& p) = default;

Person& operator= (const Person&p) = default;

Person(Person&& p) = default;

Person& operator= (Person&& p) = default;

};

 Note: since C++11 you can initialize built-in types like non-built-in types (constructor-like)!

Person p("Peter", "Griffin", 45); int i(42); double d(1.234);

Person p{"Peter", "Griffin", 45}; int i{42}; double d{1.234};

© Heinz Nixdorf Institut / Fraunhofer IEM34

 Note: one can also delete certain special member functions!

 Use keyword delete

Person(const Person& p) = delete; // copy not allowed

Class

 Remember struct

 Structs store a bunch of data

 Data members

 Have special member functions

 Can have further member functions

 Members (data and functions) can be
accessed via . (point operator)

 Important

 Users can access all members from
the outside

 Everything is public: data is interface

 Example

struct Vec3 {

double x;

double y;

double z;

};

Vec3 v;

v.x = 1;

v.y = 2;

v.z = 3;

© Heinz Nixdorf Institut / Fraunhofer IEM35

Class

 Example

struct Vec3 {

double x;

double y;

private:

double z;

};

Vec3 v;

v.x = 1;

v.y = 2;

v.z = 3; // error: x is private

© Heinz Nixdorf Institut / Fraunhofer IEM36

 Remember struct

 All members are public be default

 But you can make them private nevertheless

 Usually you don’t want to that for structs!

Class

 Classes allow separation of data and interface

 Consider

struct Vec3 {

double x;

double y;

double z;

};

and

class Vec3 {

public:

double x;

double y;

double z;

};

 Here there is no difference

 Exact same behavior

 Notice keyword public

 What other keyword might exist?

 private

 protected // later on

© Heinz Nixdorf Institut / Fraunhofer IEM37

Class

 Classes allow separation of data and interface

 Example

class Vec3 {

private:

double x;

double y;

double z;

};

 Usage

Vec3 v;

v.x = 1; // error: x is declared

private member

v.y = 1; // error: x is declared

private member

v.z = 1; // error: x is declared

private member

 How useful is that?

 We locked ourselves out!

© Heinz Nixdorf Institut / Fraunhofer IEM38

Class

 Classes allow separation of data and interface

 But wait, let’s provide some functionality

class Vec3 {

private:

double x;

double y;

double z;

public:

constexpr Vec3(double x, double y, double z) : x(x), y(y), z(z) {}

constexpr size_t size() { return 3; }

};

© Heinz Nixdorf Institut / Fraunhofer IEM39

 Usage

Vec3 v(1.1, 2.2, 3.3)

size_t vssize = v.size();

 Now we can access Vec3’s constructor

 And the member function size()

 Let’s add some more functionality!

Class

 Provide some more functionality

class Vec3 {

private:

double x;

double y;

double z;

public:

constexpr Vec3() : x(0), y(0), z(0) {}

constexpr Vec3(double x, double y, double z) : x(x), y(y), z(z) {}

constexpr size_t size() { return 3; }

constexpr double euclidean_length() { return std::sqrt(x * x + y * y + z * z); }

friend std::ostream& operator<< (std::ostream& os, const Vec3& v) {

return os << v.x << " " << v.y << " " << v.z;

}

};

© Heinz Nixdorf Institut / Fraunhofer IEM40

 Example usage of Vec3

int main() {

Vec3 v(1,2,3);

// print its data

std::cout << v << '\n';

// print its length

std::cout << "euclidean_len: "

<< v.euclidean_length() << '\n';

// print its size

std::cout << "size: " << v.size() << '\n';

return 0;

}

Class

class Vec3 {

private:

double x;

double y;

double z;

public:

Vec3() : x(0), y(0), z(0) {}

Vec3(double x, double y, double z) : x(x), y(y), z(z) {}

size_t size() { return 3; }

double euclidean_length() {

return sqrt(x * x + y * y + z * z);

}

friend std::ostream& operator<< (std::ostream& os, const Vec3& v) {

return os << v.x << " " << v.y << " " << v.z;

}

};

© Heinz Nixdorf Institut / Fraunhofer IEM41

Class

 Struct

 Data is interface

 Class

 Distinction between data and interface

 Data can only be manipulated through well defined interface!

 Make user-defined types easy and safe to use

 Only difference between struct and class is the default visibility

 struct is public by default

 class is private by default

© Heinz Nixdorf Institut / Fraunhofer IEM42

Class vs Struct

 If there is no difference, when to use what?

 Structs

 Use structs for PODs (“plain old data”)

 Use member functions as shorthands

 For simple data types

 E.g. modelling a point comprising two coordinates

 There are not many ways how to misuse a simple point

 Classes

 Use classes for non-PODs

 More sophisticated data types

 Modelling a mathematical vector with more complex operations

 Graph types, etc.

© Heinz Nixdorf Institut / Fraunhofer IEM43

How to organize a C++ project?

 C++ allows for separation of code into header and implementation files (unlike Java)

 For logical related code …

 that is …

1. a collection of functions designed for a specific purpose

2. a user defined type (that may contains member functions) (struct or class)

 put function declarations and / or type declarations in a header file (ending “.h”)

 Do not forget the include guards

 put the (member) function / global variable definitions in an implementation file (ending “.cpp”)

 This allows separate compilation of implementation files / modules!

 A compiled implementation file / module results in an object file (ending “.o”)

 Object files contain machine code, but may contain unresolved references (e.g. function calls)

 The linker links all object files, resolves all references and produces an executable program

© Heinz Nixdorf Institut / Fraunhofer IEM44

© Heinz Nixdorf Institut / Fraunhofer IEM45

File: Vec3.cpp
#include "Vec3.h"

#include <iostream>

void freeFunction() {/* def */}

int value = 42;

Vec3::Vec3() : x(0), y(0), z(0) {};

Vec3::Vec3(double x,

double y,

double z)

: x(x), y(y), z(z) {};

size_t Vec3::size() { return 3; }

double Vec3::euclidean_length() {

return sqrt(x * x + y * y + z * z);

}

std::ostream& operator<< (

std::ostream& os,

const Vec3& v) {

os << v.x <<" "<< v.y <<" "<< v.z;

}

File: Vec3.h
#ifndef VEC3_H_

#define VEC3_H_

#include <iostream>

void freeFunction();

extern int value;

class Vec3 {

private:

double x;

double y;

double z;

public:

Vec3();

Vec3(double,double,double);

size_t size();

double euclidean_length();

friend std::ostream&

operator<< (

std::ostream& os,

const Vec3& v);

};

#endif

File: main.cpp

#include <iostream>

#include "Vec3.h"

int main() {

freeFunction();

std::cout << value << '\n';

Vec3 v(10, 20, 30);

std::cout << v << '\n';

std::cout << v.size() << '\n';
std::cout <<

v.veuclidean_length() << '\n';
return 0;

}

 Each .cpp file can be compiled

separately into an .o file

 Once all sources have been
compiled, linker links all .o files

(and external libraries) into an

executable program

How to organize a C++ project?

How to organize a C++ project?

 Header files are only included but never compiled

 Implementation files are typically compiled and linked separately

 Option A (your homework)

$ clang++ -std=c++17 –Wall –Wextra Vec3.cpp main.cpp –o main

 Option B (real C/C++ projects)

$ clang++ -std=c++17 –Wall –Wextra –c Vec3.cpp

$ clang++ -std=c++17 –Wall –Wextra –c main.cpp

$ clang++ -std=c++17 –Wall –Wextra Vec3.o main.o –o main

 Realistic projects would use build systems such as Makefile, CMake, etc.

 Build systems allow developers to encode how a project has to be build

 Project/

 main.cpp

 Vec3.h

 Vec3.cpp

© Heinz Nixdorf Institut / Fraunhofer IEM46

Language-processing system revisited

 A few programs from this language-processing system (Linux)

 cpp – the c preprocessor

 g++ or clang++ – a C++ compiler

 as – a assembler

 nm – a tool to list symbols defined in object files

 ld – a linker

 Usually a C++ compiler calls all those programs for you

47

More on C/C++ compiler toolchains

 Use tools to automatically improve your code

 “Everything in C++ is hard”

 Even simple code formatting is hard (e.g. preprocessor macros  later on)

 Powerful and clever tools are required

 Clang/LLVM provides (AST-based) tools for managing large code bases

 clang-format

 formats code

 format can be specified by a configuration file

 clang-tidy

 analysis and transformation tool

 automatically improves and modernizes code

 parameterized by a configuration file

 and many more …

© Heinz Nixdorf Institut / Fraunhofer IEM48

 I uploaded some exemplary project
and configurations files and give
some examples on how to use them
in the exercise class(es)

 You are welcome to use those tools!

© Heinz Nixdorf Institut / Fraunhofer IEM49

File: Vec3.cpp
#include <iostream>

#include "Vec3.h"

namespace first {

void foo(){ std::cout << "first"; }

} // namespace first

namespace second {

void foo(){ std::cout << "second";}

Vec3::Vec3() {};

Vec3::Vec3(double x,

double y,

double z)

: x(x), y(y), z(z) {};

size_t Vec3::size() { return 3; }

double Vec3::euclidean_length() {

return sqrt(x * x + y * y + z * z);

}

} // namespace second

File: Vec3.h

#ifndef VEC3_H_

#define VEC3_H_

namespace first {

void foo();

} // namespace first

namespace second {

void foo();

class Vec3 {

private:

double x;

double y;

double z;

public:

Vec3();

Vec3(double,double,double);

constexpr size_t size();

double euclidean_length();

};

} // namespace second

#endif

File: main.cpp

#include <iostream>

#include "Vec3.h"

int main() {

frist::foo();

second::foo();

second::Vec3 v(10, 20, 30);

std::cout << v.size() << '\n';
return 0;

}

Namespaces

 Avoid name clashes

 Please refrain from using
using namespace std;

 A namespace can be defined in
several parts of a project

 Namespaces can be nested

Recap

 Union

 Enum and enum class

 Struct

 Special member functions

 Class

 Struct versus Class

 How to organize a C++ project

 Language-processing system revisited

 Namespaces

© Heinz Nixdorf Institut / Fraunhofer IEM50

Thank you for your attention
Questions?

