
!

C++ PROGRAMMING

Lecture 2

Secure Software Engineering Group

Philipp Dominik Schubert

CONTENTS

1. Functions

2. std::string

3. std::vector<typename T>

4. Containers

5. Pointer and reference types

© Heinz Nixdorf Institut / Fraunhofer IEM2

Notion of a function

 “A function declaration introduces the function name and its type. A function definition associates the
function name and type with the function body.” [en.cppreference.com]

 Example: a function that computes the maximum of two integer values

 Declaration

int max(int, int);

int max(int a, int b); // or with formal parameter names

 Definition

int max(int a, int b) {

if (a >= b) { return a; }

return b; // observe, that we do not need ‘else’ here

}

 Some languages allow function definition only (e.g. Java)

 We will learn why function declarations are useful in the next lecture

© Heinz Nixdorf Institut / Fraunhofer IEM3

What is a function?

© Heinz Nixdorf Institut / Fraunhofer IEM4

 A function is a little machine

 Gets some input

 Manipulates input

 Returns output

 Think of it as a functional unit!

 Similar to a mathematical function

Mathematical functions and C++

© Heinz Nixdorf Institut / Fraunhofer IEM5

 Declaration in C++

 unsigned f(unsigned, unsigned);

 Definition in C++

 unsigned f(unsigned x, unsigned y) { return x + y; }

 Note unsigned is a shorthand for unsigned int

 Task

 Declare a function 𝑓 that is able to sum two numbers 𝑥, 𝑦 ∈ ℕ

 Define this function 𝑓 to actually sum two numbers 𝑥, 𝑦 ∈ ℕ

 Declaration in mathematics

 𝑓:ℕ × ℕ → ℕ

 Definition in mathematics

 𝑓 𝑥, 𝑦 ⟼ 𝑥 + 𝑦

Functions in C++

 Note

 A function may not return

 A function may receive no parameters

void f() {} // void is a ”special” type  no type

void g(int a);

void h(void);

int returnOne() { return 1; }

 Functions should have a “meaningful” name (unlike mathematical functions)

 General rule: name things according to their purpose, same holds for variables!

 Function’s in- and output can be …

 Built-in types

 User-defined types (today and next time)

© Heinz Nixdorf Institut / Fraunhofer IEM7

Functions in C++

 Lets define a function

 Why you should use meaningful names:

int function(int x, int y) {

int result = x;

for (int i = 2; i <= y; ++i) {

result *= x;

}

return result;

}

 What is the value of result after the function call?

 int result = function(2, 4);

 16

 What does the function do?

 Implements the power function

 What would be a better declaration?

 int pow(int base, int exponent);

 Note this function “only works” for integers!

 Don’t try int result = pow(2.5, 4.8);

 Significant figures get cut off (type casting)

© Heinz Nixdorf Institut / Fraunhofer IEM8

Use of functions

 Use a function to

 perform a logical task

 that has to be performed multiple times

 don’t repeat yourself

 build an abstraction / generalization

 structure your source code

 The task described by a function can be reused!

 Faster development

 Less error prone

 Improved readability

 Use libraries: a collection of useful functions

int pow(int base, int exponent) {

int result = base;

for (int i = 2; i <= exponent; ++i) {

result *= base;

}

return result;

}

9

Use of functions

 Let’s consider the factorial function!

 Sequential

int factorial(int n) {

int f = n;

while (n-- > 1) {

f *= n;

}

return f;

}

 What is that?

int factorial(int n) {

if (n > 1) { return n * factorial(n-1) };

return 1;

}

 Computes the factorial function using recursion!

© Heinz Nixdorf Institut / Fraunhofer IEM10

Conditional assignments and the ternary operator

 If an assignment depends on a condition you can use a shortcut

int i = ... // some value

int variable;

if (i > 10) {

variable = 100;

} else {

variable = 0;

}

int variable = (i > 10) ? 100 : 0; // shorthand which does the same

 Note there are many of these short forms

 c++;

 d += 10;

 unsigned // shorthand for unsigned int

 You will get used to it

© Heinz Nixdorf Institut / Fraunhofer IEM
10

Recursion

 With functions one can make use of recursion!

 “Recursion occurs when a thing is defined in terms of itself or of its type. Recursion is used in a variety of
disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics
and computer science, where a function being defined is applied within its own definition.” [en.wikipedia.com]

 Another recursive definition of recursion: “Recursion, see recursion!”

 A recursive function uses itself to solve a task

 A function exhibits recursive behavior if

1. it defines one (or more) base case(s) that do not use recursion

2. a set of rules that reduce all other cases towards the base case

© Heinz Nixdorf Institut / Fraunhofer IEM
11

[Figure taken from http://giphy.com/]

https://en.wikipedia.org/wiki/Linguistics
https://en.wikipedia.org/wiki/Logic
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Function_(mathematics)

Factorial function revisited

int factorial(int n) {

if (n > 1){ return n * factorial(n-1);}

return 1;

}

 What happens if factorial gets called?

int result = factorial(5);

 Let’s see what happens:

factorial(5)

if (5 > 1) return 5 * factorial(4);

factorial(4)

if (4 > 1) return 4 * factorial(3);

factorial(3)

if (3 > 1) return 3 * factorial(2);

factorial(2)

if (2 > 1) return 2 * factorial(1);

factorial(1)

if (1 > 1) NO!

return 1;

We have reached the base case!

The call to factorial(5) can now evaluate

5 * 4 * 3 * 2 * 1 = 120

 If you are still not convinced have a look at:

 What on Earth is Recursion? – Computerphile

 Recursion often allows for elegant solutions

 Requires some time to get used to

© Heinz Nixdorf Institut / Fraunhofer IEM13

https://www.youtube.com/watch?v=Mv9NEXX1VHc

Functions

 You can now divide your computations into
logical pieces (functions)

 The OS calls the main function for you

 In main you can call whatever you like

int main() {

int i = factorial(5);

int j = factorial(6);

return 0;

}

int factorial(int n) {

return (n > 1) ? n * factorial(n-1) : 1;

}

© Heinz Nixdorf Institut / Fraunhofer IEM14

A note on functions  Actual parameters passed to a function are copied by default!

 Inside a function you work on copies by default!

int increment(int x) { return ++x; }

int x = 10;

int y = increment(x); // y is now 11

// x is still 10

 Remember constexpr

// C++11 allows one return statement

constexpr int addNumbers(int a, int b) {

return a + b;

}

// C++14 allows more than one statement

constexpr int factorial(int n) {

int result = 1;

while (n-- > 0) {

result *= n;

}

return result;

}

 With constexpr we effectively have to versions:

 a constexpr version

 a non-constexpr-version

// can be evaluated at compile time

constexpr int i = factorial(8);

int x = ... // non-constant x

// can only be evaluated at run time

int j = factorial(x);

© Heinz Nixdorf Institut / Fraunhofer IEM15

A note on functions

 Function calls come with some costs in terms of performance

 Safe registers’ contents, put function arguments on the stack, increment stack pointer, …, restore
registers, perform jump back

 But usually that is not why your code is slow!

 If high performance really matters, compiler can inline small functions

 A function call is replaced by copying the functions body to the call site

 Use the keyword inline to give the compiler some hints

inline int add(int a, int b) { return a + b; }

// a call to add()

int c = add(10, 20);

// may be replaced with

int c = 10 + 20;

 Inlining is only necessary in rare cases (sometimes you make it worse)

 Compiler inlines on its own if compiler optimizations are turned on (-Ox flag, where x is 1,2 or 3)

© Heinz Nixdorf Institut / Fraunhofer IEM16

Local and global variables

 Local variables are only accessible within a
certain function / scope (e.g. main)

 A variable is local if it is defined inside a function

 Example

int main() {

int i = 42;

int j = 13;

std::cout << i << '\n';

std::cout << j << '\n';

return 0;

}

 So far we only used local variables

 Global variables are accessible across functions
(and modules)

 A variable is global if it is not defined within a
function

 Example

int i = 10;

double d = 1.234;

void printGobals() {

std::cout << i << '\n';

std::cout << d << '\n';

}

double addGlobals() {

return i + d;

}

© Heinz Nixdorf Institut / Fraunhofer IEM17

A note on global variables

 Try to avoid global variables as much as possible

 You rarely need them

 They break local reasoning

 It becomes pretty hard to understand the code

 It is hard to parallelize code that heavily makes use of globals

© Heinz Nixdorf Institut / Fraunhofer IEM18

User-defined types / non-built-in data types

 Two very important user-defined types

 std::string

 std::vector<typename T>

 Implemented in the standard template library (STL)

 Vector is perhaps the most used non-built-in data type

 You can define your own data types

 Use class or struct keyword

 Next lecture!

© Heinz Nixdorf Institut / Fraunhofer IEM19

std::string

 Why should you use std::string in C++?

 C has no built-in string datatype

 In C a string is stored in an array of characters

char str[] = "Hello, World!";

std::cout << str << '\n';

int i = 0;

while (str[i] != '\0') {

std::cout << str[i] << '\n';

++i;

}

char *ptr2str = "Hello, World!";

char data[10] = "Hi!";

 Such character arrays are (hopefully) terminated with '\0'

 Which you can’t see directly

 Remember built-in arrays are dangerous

 What if you forget the size of that array?

 What if you lose '\0' or have multiple '\0'
in your character array through incorrect
string processing?

 You risk reads and writes outside your array

 Undefined behavior / buffer overflows

 Please watch this video

 Buffer overflow attack

 C++ has no built-in strings either

 But it offers a safe wrapper: std::string

© Heinz Nixdorf Institut / Fraunhofer IEM20

https://www.youtube.com/watch?v=1S0aBV-Waeo

std::string

 Use the #include <string> header file

 std::string allows you to store strings

 std::string offers a lot of useful functionalities as well

 Functionalities are offered as member functions (member functions: next lecture)

 std::string can grow and shrink dynamically (dynamic memory allocation: next lectures)

 std::string knows its size as well, unlike simple built-in arrays!

 std::string automatically adds the terminal character '\0'

 No buffer overflows!

 For the complete list of functionalities see

 http://en.cppreference.com/w/cpp/string/basic_string

© Heinz Nixdorf Institut / Fraunhofer IEM21

http://en.cppreference.com/w/cpp/string/basic_string

std::string

 The design is so good, it can be used like an
ordinary built-in type (C++ is powerful)

 Example

// create a string from string literal

std::string str = "Hello World!";

// copy str to other

std::string other = str;

// get str’s size

std::cout << str.size() << '\n';

// replace a single character

str[4] = 'O';

// append some more characters

str += "some more characters";

// extract a substring

std::string hello = str.substr(0,5);

std::string yetanother = "Hello";

// check for equality

std::cout << (hello == yetanother)

<< '\n';

© Heinz Nixdorf Institut / Fraunhofer IEM22

std::vector<typename T>

 Again built-in arrays are dangerous for several reasons

 std::vector<typename T> is a safe wrapper for built-in arrays (similar to std::string)

 std::vector<typename T> can store multiple elements of the same type in sequence

 It is mutable and can grow and shrink dynamically (dynamic memory allocation: next lectures)

 Ok fine, but what is this <typename T>?

 This is called a template parameter

 Templates and template metaprogramming? (in the next lectures)

 What are templates used for?

 Allow for writing code that is independent of the type! (Cannot be done in the C language)

 A vector can store any type!

vector<int> ivec = {1, 2, 3};

vector<double> dvec;

vector<std::string> svec = { "Hello", "World", "!" };

© Heinz Nixdorf Institut / Fraunhofer IEM22

std::vector<typename T>

 How to initialize (or construct) a vector?

 Example

std::vector<int> ivec; // call to default constructor

std::vector<int> ivec(10); // call to constructor

std::vector<int> ivec(10, 42); // another constructor

std::vector<int> ivec{1, 2, 3, 4, 5}; // yet another constructor

std::vector<int> ivec = {1, 2, 3, 4, 5}; // even more

 A vector can be constructed using one of its constructors

 All user-defined data types have constructors

 A constructor’s job is to construct a variable / an object

 Acquires resources and initializes correctly

 Constructors are special member functions (next lecture)

© Heinz Nixdorf Institut / Fraunhofer IEM24

std::vector<typename T>

 std::vector is designed such that it can be used like a built-in type

 Example

std::vector<int> ivec = {1, 2, 3};

std::cout << "size: " << ivec.size() << '\n';

ivec.push_back(42);

ivec.push_back(120);

std::cout << "size: " << ivec.size() << '\n';

for (int i : ivec) {

std::cout << i << ' ';

}

std::cout << '\n';

 Note: we are using members functions (next lecture)

 Members can be data (variables) or functions  data members / function members

 Members can be accessed with the . (point) operator

© Heinz Nixdorf Institut / Fraunhofer IEM25

Type aliasing

 Introduce type aliases

 using the typedef or using keyword

 Prefer using (modern version)

 as types get more complicated

 to stride towards more flexible programs

 typedef double real_t;

 using ivec = vector<int>;

 Dealing with types decltype(*) (this is a C++11
feature)

 * can be a variable / expression / function

const int i = 13;

decltype(i) x = 10;

 x has now i’s declared type (which is const int)

 A “real world example”

// oh dear

std::vector<std::pair<std::string,int>> v;

// better use an alias for that

using vpsi_t =

std::vector<std::pair<std::string,int>>;

// you can declare variables of that type

vpsi_t x; // easier to read and write

© Heinz Nixdorf Institut / Fraunhofer IEM26

What are containers?

 std::vector<typename T> is a container

 A container can store a bunch of data

 Containers are generic

 Use one or more template parameters

 Can hold values of any type

 Use different containers for different purposes

 Choose the right container depending on your problem

 Note that you can nest containers!

 std::vector<std::vector<double>> matrix = { {1, 2}, {4, 5} };

© Heinz Nixdorf Institut / Fraunhofer IEM27

STL containers?

 Sequence containers

 array // fixed size array

 vector // flexible size array

 deque // double-ended queue

 forward_list // singly linked list

 list // doubly linked list

 Associative containers

 set // unique element set

 map // unique element associative

storage

 multiset // non-unique element set

 multimap // non-unique element

associative storage

 Unordered associative containers

 unordered_set // hash set

 unordered_map // hash map

 unordered_multiset // …

 unordered_multimap // …

 Container adaptors

 stack // stack adaptor

 queue // queue adaptor

 priority_queue // priority queue
adaptor

 STL containers …

 are quite useful

 are implemented very efficiently

 are accessible by including their header file

© Heinz Nixdorf Institut / Fraunhofer IEM28

When to use what?

 Sequence containers

// fixed size array

std::array<int, 4> a = {1, 2, 3, 4};

std::cout << a.size() << '\n';

for (int i : a) {

std::cout << i << ' ';

}

// flexible size array

std::vector<int> b = {1, 2, 3, 4};

std::cout << b.size() << '\n';

for (int i : b) {

std::cout << i << ' ';

}

b.push_back(5);

b.push_back(6);

 Rarely used:

 forward_list // singly linked list

 list // doubly linked list

 Associative containers

// unique element set

std::set<int> c = {1, 2, 3};

c.insert(5);

c.insert(6);

if (c.count(5)) {

std::cout << "set contains '5'.\n";

}

// unique element associative storage

std::map<int, std::string> d;

d.insert(std::make_pair(1, "A"));

d.insert(std::make_pair(2, "B"));

d[3] = "C";

std::cout << d[2] << '\n';

 You may wish to use their unordered counterparts

© Heinz Nixdorf Institut / Fraunhofer IEM28

Containers in action

 Use STL vector to represent mathematical vectors ∈ ℝ𝑛

 std::vector<typename T> // use #include <vector>

 Task: create two vectors to represent vectors from maths and write a function that calculates the scalar
product!

 x, y ∈ ℝ3

 The scalar product < ∙ ,∙ > is defined as

 < 𝑎, 𝑏 > = σ𝑖=0
𝑛 𝑎𝑖 ∙ 𝑏𝑖

 Solution in C++

std::vector<double> x{1, 2, 3}; // call the initializer_list constructor

std::vector<double> y{4, 5, 6}; // call the initializer_list constructor

 We now have two vectors x and y filled with some floating-point numbers

© Heinz Nixdorf Institut / Fraunhofer IEM29

Containers in action

 < 𝑎, 𝑏 > = σ𝑖=0
𝑛 𝑎𝑖 ∙ 𝑏𝑖

 A function that computes the scalar product

double scalar_product(std::vector<double> x, std::vector<double> y) {

double scalar_prod = 0; // create a variable holding the result

if (x.size() != y.size()) { /* handle that error */ } // check dimensions

for (size_t i = 0; i < x.size(); ++i) { // iterate over vectors’ entries

scalar_prod += x[i] * y[i]; // multiply the entries and sum up to result

}

return scalar_prod; // return the result

}

 More on error handling later on

© Heinz Nixdorf Institut / Fraunhofer IEM30

Containers in action

 Data

std::vector<double> x{1, 2, 3};

std::vector<double> y{4, 5, 6};

 Function to manipulate data (computes scalar product)

double scalar_product(std::vector<double> x, std::vector<double> y) {

double scalar_prod = 0; // create a variable holding the result

if (x.size() != y.size()) { /* handle that error */ } // check dimensions

for (size_t i = 0; i < x.size(); ++i) { // iterate over vectors’ entries

scalar_prod += x[i] * y[i]; // multiply the entries and sum up to result

}

return scalar_prod; // return the result

}

 double s = scalar_product(x, y);

 s is 32

© Heinz Nixdorf Institut / Fraunhofer IEM31

More on types: pointer, reference, and value types

 Take a deep breath!

 What makes C++ so powerful?

 Full control over resources (e.g. memory) !

 Three “kinds / versions” of types exist in C++

 “Normal”/value integer type int i = 42;

 Pointer to an integer type int *j = &i;

 Reference to an integer type int &k = i;

 Makes C++ very powerful

 Pointers and references are types that store addresses

 Think of them as “pointers” (points-to graphs)

© Heinz Nixdorf Institut / Fraunhofer IEM32

j

i

k

[Figure taken from http://www.quickmeme.com/meme/3ovgn9]

More on types: pointers

 Pointers, references, addresses?

 Every variable has a memory address

 Think of houses (= variables)

 People live in houses (= values)

 Every house has a house number (= address)

int *i_ptr; // i_ptr can store an address to an int

double *d_ptr; // d_ptr can store an address to a double

float *f_ptr = nullptr; // f_ptr is initialized with a null-pointer: f_ptr points to nothing!

int i = 42; // integer initialized with 42

int *j = &i; // j holds the address of i (or points to i), & is the address of operator here

int *k; // uninitialized pointer to an integer

k = &i; // let k point to i

int **l = &j; // l holds the address of j

© Heinz Nixdorf Institut / Fraunhofer IEM33

int i = 42;

// this is house i

// 42 lives here

// i´s address is

&i

More on types: pointers

 Pointers, references, addresses?

 Every variable has a memory address

 A mail man can deliver letters and parcels

 You can also find a person using his address

int i = 42;

int *j = &i; // get i’s address, this is called referencing (we create a pointer / reference)

*j = 100; // modify i’s value through its address, this is called dereferencing

int k = *j; // obtain i’s value through its address, this is called dereferencing

© Heinz Nixdorf Institut / Fraunhofer IEM34

int i = 42;

// this is house i

// 42 lives here

// i´s address is

&i

More on types: pointers

 Pointers, references, addresses?

 Every variable has a memory address

int i = 42;

int *j = &i; // get i´s address, this is called referencing (we create a pointer / reference)

int k = *j; // obtain i´s value through its address, this is called dereferencing

std::cout << &i << '\n';

std::cout << i << '\n';

std::cout << &j << '\n';

std::cout << j << '\n';

std::cout << &k << '\n';

std::cout << k << '\n';

© Heinz Nixdorf Institut / Fraunhofer IEM35

int i = 42;

// this is house i

// 42 lives here

// i´s address is

&i

More on types: pointers

 Important

 A pointer might be null

 int *i = nullptr;

 Meaning: the address does not exist / there is no address / i points to nothing

 Don’t dereference a nullptr!

 A pointer can be checked for nullptr

if (i == nullptr) { cout << "i holds the null pointer\n"; }

 Or if you wish to pretend to be cool

if (!i) { cout << "i holds the null pointer\n"; }

© Heinz Nixdorf Institut / Fraunhofer IEM36

More on types: pointers

 Things to remember

 Declare a pointer type using *

 Take an address of a variable with &

 Dereference a pointer with *

 A pointer variable may hold the null pointer nullptr

 A pointer may dangle

int *p;

int q = *p; // please don't

 We will discuss techniques and tools to debug memory issues later on

© Heinz Nixdorf Institut / Fraunhofer IEM37

More on types: references

 Example

int i = 42;

int &j = i;

 Declare a reference type by using &

 “You can use j as if it was i”

 References behave much like pointers, but

 Pointers can be re-assigned, references can not

 Pointers can be null and are allowed to dangle

 References always refer to a valid object

 Pointer’s address can be taken, references addresses cannot be taken

 Pointers allow for pointer arithmetic, references don’t (next lecture(s))

 References are internally implemented as pointers

 In general: references are much safer to use

© Heinz Nixdorf Institut / Fraunhofer IEM38

References vs pointers

 When to use what and why do I need references and pointers?

 References

 Use references in functions’ parameter lists

 See next slides

 Pointers

 Use pointers to implement algorithms and data structures (e.g. linked lists)

 Use pointers for dynamic memory allocation

 Next lecture(s)

© Heinz Nixdorf Institut / Fraunhofer IEM39

Functions: parameter passing (and returning)

 How to pass and return huge amounts of data to and from a function?

 Consider a function that implements a matrix multiplication

matrix matrixMult(matrix a, matrix b);

 Problem

 If matrixMult() is called, actual parameters are copied!

 Matrices can be huge, millions of elements  copying may be very expensive

 Processor is only copying data, rather than computing useful results

 Can we avoid copying large data into functions?

 Pass data by reference, rather than by value!

matrix matrixMult(matrix& a, matrix& b);

 Matrices are not copied, we just pass a reference to a matrix (which is an address)

 Matrix references can be used as if they were the matrices within the function’s body

© Heinz Nixdorf Institut / Fraunhofer IEM40

Functions: parameter passing (and returning)

matrix matrixMult(matrix& a, matrix& b);

 Problem

 Caution: If we modify the references a and b within the function we are changing the actual matrices

 How can we avoid accidental changes made to the matrices a and b?

 Use const references to avoid modifications

matrix matrixMult(const matrix& a, const matrix& b);

 Changes made to const references result in compiler errors

 How to return results if data to be returned is very large?

 Return by reference?

matrix& matrixMult(const matrix& a, const matrix& b);

 No! Return by value, compilers use return value optimization (RVO)!

 Use: matrix matrixMult(const matrix& a, const matrix& b);

© Heinz Nixdorf Institut / Fraunhofer IEM41

Functions: parameter passing (and returning)

 If your data is small (e.g. built-in types such as int)

 Pass and return by value (copy data)

 If you do not know the size upfront (e.g. in case of containers) or deal with huge data

 Pass by reference (data itself stays where it is, no unnecessary copying)

 Use const if you do not wish to modify the data within the function

 Return by value (since all modern compilers support RVO)

© Heinz Nixdorf Institut / Fraunhofer IEM42

Recap

 Functions

 Recursion

 Conditional assignments

 constexpr functions

 inline functions

 Local and global variables

 std::string and std::vector<typename T>

 STL containers

 Containers in action: scalar product

 Values, pointers, references

 Parameter passing

© Heinz Nixdorf Institut / Fraunhofer IEM44

Thank you for your attention
Questions?

