C++ PROGRAMMING

Lecture 2
Secure Software Engineering Group

Philipp Dominik Schubert

C

~ Fraunhofer

IEM

HEINZ NIXDORF INSTITUT

SECURE
SOFTWARE ENGINEERING

CONTENTS

Functions

std::string

std: :vector<typename T>
Containers

S N

Pointer and reference types

. . . HEINZ NIXDORF INSTITUT]
2 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM UNIVERSITAT PADERBORN —Z Fraunhofﬂ

Notion of a function

= “Afunction declaration introduces the function name and its type. A function definition associates the
function name and type with the function bOdy.” [en.cppreference.com]

= Example: a function that computes the maximum of two integer values
= Declaration
int max(int, int);
int max(int a, int b); // or with formal parameter names
= Definition
int max(int a, int b) {
if (a >= b) { return a; }
return b; // observe, that we do not need ‘else’ here
}
= Some languages allow function definition only (e.g. Java)
= We will learn why function declarations are useful in the next lecture

\

3 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

What is a function?

= A function is a little machine

Gets some input

Manipulates input
= Returns output

Think of it as a functional unit!

= Similar to a mathematical function

4 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

INPUT X
v

FUNCTION f:

v
OUTPUT f(x)

\

HEINZ NIXDORF INSTITUT ~ Fraunhofer
IEM

Mathematical functions and C++

= Task
= Declare a function f that is able to sum two numbers x,y € N
= Define this function f to actually sum two numbers x,y € N

= Declaration in mathematics = Declaration in C++
= iNXN->N " unsigned f(unsigned, unsigned);
= Definition in mathematics = Definition in C++
" fx,y)—x+y " unsigned f(unsigned x, unsigned y) { return x + y; }

= Note unsigned is a shorthand for unsigned int

\

5 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Functions in C++

= Note
= A function may not return
= A function may receive no parameters
void f£() {} // volid 1s a ”special” type =2 no type
void g(int a);
void h(void) ;
int returnOne() { return 1; }
= Functions should have a “meaningful” name (unlike mathematical functions)
= General rule: name things according to their purpose, same holds for variables!
= Function’s in- and output can be ...
= Built-in types
= User-defined types (today and next time)

\

7 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Functions in C++

= | ets define a function What is the value of result after the function call?

= Why you should use meaningful names: " int result = function(2, 4);
= 16

int function(int x, int y) {

int result = x;

What does the function do?
* |Implements the power function

for (int 1 = 2, 1 <= vy; ++1i) {
result *= x;

}

return result;

What would be a better declaration?

= int pow(int base, int exponent);

Note this function “only works” for integers!
» Don’ttry int result = pow(2.5, 4.8);
= Significant figures get cut off (type casting)

\

8 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Use of functions

= Use a function to
= perform a logical task
= that has to be performed multiple times

- don’t repeat yourself int pow(int base, int exponent) {
= puild an abstraction / generalization int result = base;
= structure your source code for (int 1 = 2; 1 <= exponent; ++i) {

result *= base;

= The task described by a function can be reused! }
» Faster development return result;
= Less error prone }

= Improved readability
= Use libraries: a collection of useful functions

\

o HEINZ NIXDORF INSTITUT ~ Fraunhofer

IEM

Use of functions

= |et’s consider the factorial function!
= Sequential

int factorial(int n) {

int £ = n;

while (n-- > 1) {
f *= n;

}

return f£f;

10 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

= What is that?

int factorial(int n) {

if (n > 1) { return n * factorial(n-1) };

return 1;

= Computes the factorial function using recursion!

HEINZ NIXDORF INSTITUT

\

~ Fraunhofer

IEM

Conditional assignments and the ternary operator

= |f an assignment depends on a condition you can use a shortcut

int 1 = ... // some value
int variable;

if (1 > 10) {

variable = 100;
} else {
variable = 0;

}

int variable = (i1 > 10) ? 100
= Note there are many of these short forms

" Cc++;
" d += 10;

0;

// shorthand which does the same

" unsigned // shorthand for unsigned int

= You will get used to it

10 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

HEINZ NIXDORF INSTITUT

\

~ Fraunhofer

IEM

Recursion

= With functions one can make use of recursion!

= “Recursion occurs when a thing is defined in terms of itself or of its type. Recursion is used in a variety of
disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics
and computer science, where a function being defined is applied within its own definition.” en.wikipedia.com]

= Another recursive definition of recursion: “Recursion, see recursion!”

= A recursive function uses itself to solve a task

= A function exhibits recursive behavior if
1. it defines one (or more) base case(s) that do not use recursion
2. a set of rules that reduce all other cases towards the base case

11 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer

[Figure taken from http://giphy.com/] IEM

https://en.wikipedia.org/wiki/Linguistics
https://en.wikipedia.org/wiki/Logic
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Function_(mathematics)

Factorial function revisited

int factorial(int n) {

if (n > 1){ return n * factorial(n-1);}

return 1;
}
= What happens if factorial gets called?
int result = factorial(5);
= Let's see what happens:
factorial(5)
if (5> 1) return 5 * factorial(4);
factorial(4)
if (4 > 1) return 4 * factorial(3);
factorial(3)
if (3> 1) return 3 * factorial(2);

13 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

factorial(2)
if (2> 1) return 2 * factorial(1);
factorial(1)
if (1>1) NO!
return 1;
We have reached the base case!
The call to factorial (5) can now evaluate
5*4*3*2*1=120

= |f you are still not convinced have a look at:

= What on Earth is Recursion? — Computerphile
= Recursion often allows for elegant solutions
= Requires some time to get used to

\

HEINZ NIXDORF INSTITUT ~ Fraunhofer
IEM

https://www.youtube.com/watch?v=Mv9NEXX1VHc

Functions

= You can now divide your computations into
logical pieces (functions)

» The OS calls the main function for you

* Inmain you can call whatever you like

int main() { int factorial (int n) {

int 1 = factorial(d); return (n > 1) ? n * factorial(n-1) : 1;

int j = factorial(6)
return 0;

\

14 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

A n ote on fU N Ctl ons » Actual parameters passed to a function are copied by default!
» |nside a function you work on copies by default!
int increment (int x) { return ++x; }

.) . int x = 10;
= With constexpr we effectively have to versions:
_ int y = increment(x); // y is now 11
" aconstexpr version
// x is still 10

" anon-constexpr-version - Remember constexpr

// can be evaluated at conmnjja time // C++11 allows one return statement

constexpr int i = factorial(8); source program constexpr int addNumbers (int a, int b) {
return a + b;
Compiler
}
target program // C++14 allows more than one statement
Figure 1.1: A compiler constexpr int factorial (int n) {
int x = ... // non-constant x int result = 1;

// can only be evaluated at run time while (n-= > 0) {

. . : result *= n;
int j = factorial (x);

}

return result;

input —Target Program |—= output

Figure 1.2: Running the target program }

15 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

\

A note on functions

= Function calls come with some costs in terms of performance

» Safe registers’ contents, put function arguments on the stack, increment stack pointer, ..., restore
registers, perform jump back

= But usually that is not why your code is slow!
= |f high performance really matters, compiler can inline small functions

= A function call is replaced by copying the functions body to the call site

= Use the keyword inline to give the compiler some hints
inline int add(int a, int b) { return a + b; }
// a call to add()
int ¢ = add (10, 20);
// may be replaced with
int ¢ = 10 + 20;

= |nlining is only necessary in rare cases (sometimes you make it worse)

= Compiler inlines on its own if compiler optimizations are turned on (-Ox flag, where x is 1,2 or 3)

\

=
16 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Local and global variables

= Local variables are only accessible within a
certain function / scope (e.g. main)

= Avariable is local if it is defined inside a function
= Example
int main() {
int 1 = 42;
int § = 13;
std::cout << i << "\n';
std::cout << j << "\n';
return 0O;

}
= So far we only used local variables

17 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

Global variables are accessible across functions
(and modules)

A variable is global if it is not defined within a
function

Example

int i = 10;

double d = 1.234;

void printGobals() {
std::cout << 1 << "\n';
std::cout << d << "\n';

}

double addGlobals() {

return 1 + d;

\

HEINZ NIXDORF INSTITUT ~ Fraunhofer

IEM

A note on global variables

= Try to avoid global variables as much as possible
= You rarely need them

» They break local reasoning
= |t becomes pretty hard to understand the code

= |tis hard to parallelize code that heavily makes use of globals

| 'ONE DOES

NOT'SII
o

f

USE GLOBAL VARIABLES

—
18 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer

IEM

User-defined types / non-built-in data types

= Two very important user-defined types
" std::string
" std::vector<typename T>
* Implemented in the standard template library (STL)
= Vector is perhaps the most used non-built-in data type

» You can define your own data types
» Use class or struct keyword

= Next lecture!

\

19 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

std: :string

= Why should you use std: :string in C++?
= C has no built-in string datatype
= |n C a string is stored in an array of characters
char str[] = "Hello, World!";
std::cout << str << "\n';
int 1 = 0;
while (str[i] '= "\ 0") {

std::cout << str[i] << "\n';

++1;
}
char *ptrZ2str = "Hello, World!";
char data[l0] = "Hi!";

= Such character arrays are (hopefully) terminated with "\ 0"

= Which you can’t see directly

20 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

Remember built-in arrays are dangerous

What if you forget the size of that array?

What if you lose '\ 0' or have multiple "'\ 0"
In your character array through incorrect
string processing?

You risk reads and writes outside your array
= Undefined behavior / buffer overflows
» Please watch this video

= Buffer overflow attack

C++ has no built-in strings either
But it offers a safe wrapper: std: :string

\

HEINZ NIXDORF INSTITUT ~ Fraunhofer
IEM

https://www.youtube.com/watch?v=1S0aBV-Waeo

std: :string

= Usethe #include <string> header file
" std::string allows you to store strings
= std::string offers a lot of useful functionalities as well
» Functionalities are offered as member functions (member functions: next lecture)
" std::string can grow and shrink dynamically (dynamic memory allocation: next lectures)
" std::string knows its size as well, unlike simple built-in arrays!
" std::string automatically adds the terminal character '\ 0"
= No buffer overflows!
» For the complete list of functionalities see
= http://en.cppreference.com/w/cpp/string/basic_string

\

21 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

http://en.cppreference.com/w/cpp/string/basic_string

std: :string

= The design is so good, it can be used like an
ordinary built-in type (C++ is powerful)

= Example

// create a string from string literal // append some more characters
std::string str = "Hello World!"; str += "some more characters";
// copy str to other // extract a substring
std::string other = str; std::string hello = str.substr(0,5);
// get str’s size std::string yetanother = "Hello";
std::cout << str.size() << '"\n'; // check for equality
// replace a single character std::cout << (hello == yetanother)
str[4] = '0'; << "\n';

=

22 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

std: : vector<typename T>

= Again built-in arrays are dangerous for several reasons
" std::vector<typename T> Iis a safe wrapper for built-in arrays (similar to std: : string)
" std::vector<typename T> can store multiple elements of the same type in sequence

* |tis mutable and can grow and shrink dynamically (dynamic memory allocation: next lectures)
= Ok fine, but what is this <typename T>?

= This is called a template parameter
» Templates and template metaprogramming? (in the next lectures)
= What are templates used for?
= Allow for writing code that is independent of the type! (Cannot be done in the C language)
= Avector can store any type!
vector<int> ivec = {1, 2, 3};

vector<double> dvec;

vector<std::string> svec = { "Hello", "World"™, "I"™ };

\

22 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

std: :vector<typename T>

= How to initialize (or construct) a vector?

= Example
std: :vector<int> ivec; // call to default constructor
std: :vector<int> ivec (10) ; // call to constructor
std: :vector<int> ivec (10, 42); // another constructor
std: :vector<int> ivec{l, 2, 3, 4, 5}; // yet another constructor
std: :vector<int> ivec = {1, 2, 3, 4, 5}; // even more

= A vector can be constructed using one of its constructors
= All user-defined data types have constructors
= A constructor’s job is to construct a variable / an object
= Acquires resources and initializes correctly
= Constructors are special member functions (next lecture)

\

24 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

std: :vector<typename T>

" std::vector is designed such that it can be used like a built-in type

= Example
std: :vector<int> ivec = {1, 2, 3};
std::cout << "size: " <KL ivec.size() << "\n';

ivec.push back(42);
ivec.push back(120);

std::cout << "size: " <KL ivec.size() << '"\n';
for (int i : ivec) {

std::cout < 1 < " '
}

std::cout << "\n';

= Note: we are using members functions (next lecture)

= Members can be data (variables) or functions - data members / function members
= Members can be accessed with the . (point) operator

\

25 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Type aliasing

» Introduce type aliases

= using the typedef or using keyword

» Prefer using (modern version)

= as types get more complicated

= to stride towards more flexible programs
" typedef double real t;
" using ivec = vector<int>;

» Dealing with types decltype (*) (thisisa C++11
feature)

= * can be a variable / expression / function
const int 1 = 13;

decltype (i) x = 10;
» x has now i’s declared type (which is const int)

26 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

= A“real world example”
// oh dear
std::vector<std::pair<std::string,int>> v;
// better use an alias for that

using vpsi t =
std: :vector<std::pair<std::string,int>>;

// you can declare variables of that type

vpsi t x; // easier to read and write

\

HEINZ NIXDORF INSTITUT ~ Fraunhofer

IEM

What are containers?

" std::vector<typename T> IS a container
= A container can store a bunch of data
= Containers are generic
= Use one or more template parameters
= Can hold values of any type
= Use different containers for different purposes
= Choose the right container depending on your problem
= Note that you can nest containers!
" std::vector<std::vector<double>> matrix = { {1, 2}, {4, 5} };

\

27 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

STL containers?

= Seguence containers

array // fixed size array

vector // flexible size array
deque // double-ended queue
forward list // singly linked 1list
list // doubly linked list

= Associative containers

set // unique element set
map // unique element associative
storage

multiset // non-unique element set

multimap // non-unigque element
assocliative storage

28 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

= Unordered associative containers

unordered set // hash set
unordered map // hash map
unordered multiset //

unordered multimap //

= Container adaptors

stack // stack adaptor
queue // queue adaptor

priority queue // priority queue
adaptor

= STL containers ...

are quite useful
are implemented very efficiently
are accessible by including their header file

HEINZ NIXDORF INSTITUT % FraunhOfer
IEM

When to use what?

= Sequence containers = Associative containers
// fixed size array // unique element set

std::array<int, 4> a = {1, 2, 3, 4}; std::set<int> c = {1, 2, 3};

std::cout << a.size() << '\n'; C.}nsert(S);
c.insert (6);

for (int 1 : a) { .
O . A if (c.count(5)) {

} std:icout << 1 << ’ std::cout << "set contains '5'.\n";

- : }
// F%ex1ble NN ariay) // unique element associative storage
std: :vector<int> b = {1, 2, 3, 4};]
std::cout << b.size() << '\n'; std: :map<int, std::string> d;
for.kinﬁ i b; (’ d.insert (std::make pair(l, "A"));

) . . d.insert (std: :make pair(2, "B"));
std::cout << 1 << ; o —

} d[3] = "C";
b.push back (5) ; std::cout << d[2] <K "\n';
b.push back(6);
= Rarely used: = You may wish to use their unordered counterparts

» forward list // singly linked list
= list // doubly linked list

\

28 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Containers In action

= Use STL vector to represent mathematical vectors € R"

" std::vector<typename T> // use #include <vector>

» Task: create two vectors to represent vectors from maths and write a function that calculates the scalar
product!

= x,y€R3
» The scalar product < -,- > is defined as
" <ab>=Y',a;b;
= Solution in C++
std::vector<double> x{1, 2, 3}; // call the initializer list constructor
std::vector<double> y{4, 5, 6}; // call the initializer list constructor
= We now have two vectors x and y filled with some floating-point numbers

\

29 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Containers In action

= <qab>= ?zoai-bi
= A function that computes the scalar product
double scalar product(std::vector<double> x, std::vector<double> y) {

double scalar prod = 0; // create a variable holding the result
if (x.size() '= y.size()) { /* handle that error */ } // check dimensions
for (size t i = 0; 1 < x.size(); ++i) { // iterate over vectors’ entries

scalar prod += x[i] * y[i]; // multiply the entries and sum up to result
}

return scalar prod; // return the result

}
= More on error handling later on

\

30 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Containers In action

= Data
std: :vector<double> x{1, 2, 3};
std: :vector<double> vy{4, 5, 6};

» Function to manipulate data (computes scalar product)
double scalar product(std::vector<double> x, std::vector<double> y) {

double scalar prod = 0; // create a variable holding the result
if (x.size() '= y.size()) { /* handle that error */ } // check dimensions
for (size t 1 = 0; 1 < x.size(); ++i) { // iterate over vectors’ entries

scalar prod += x[i] * y[i]l; // multiply the entries and sum up to result

}

return scalar prod; // return the result

}

= double s =scalar product(x, Vy);
= 50532

\

31 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

More on types: pointer, reference, and value types

= Take a deep breath!

= What makes C++ so powerful?

= Full control over resources (e.g. memory) !

= Three “kinds / versions” of types exist in C++

= “Normal’/value integer type int i = 42;
= Pointer to an integer type int *3 = &i;
= Reference to an integer type int &k = 1i;

= Makes C++ very powerful
= Pointers and references are types that store addresses
» Think of them as “pointers” (points-to graphs)

32 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM
[Figure taken from http://www.quickmeme.com/meme/3ovgn9]

C/C++ PROGRAM NOT
WORKING?2

G
. "/7 ‘, - l‘
POINTERS .

ISTORY.CO

HEINZ NIXDORF INSTITUT ~ Fraunhofer
IEM

\

More on types: pointers

= Pointers, references, addresses?

inti=42;
= Every variable has a memory address /l this is house i
Il 42 lives here

= Think of houses (= variables) Ii's address is

= People live in houses (= values) &i

= Every house has a house number (= address)
int *i ptr; // 1 ptr can store an address to an int
double *d ptr; // d ptr can store an address to a double

float *f ptr = nullptr; // f ptr is initialized with a null-pointer: f ptr points to nothing!

int 1 = 42; // integer initialized with 42

int *j = &i; // 7 holds the address of i (or points to i), & is the address of operator here
int *k; // uninitialized pointer to an integer

k = &i; // let k point to i

int **1 = &7j; // 1 holds the address of

—
33 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

More on types: pointers

= Pointers, references, addresses?

inti=42;
= Every variable has a memory address /l this is house i
Il 42 lives here

= A mail man can deliver letters and parcels //i’s address is

= You can also find a person using his address &i

int 1 = 42;

int *] = &1; // get i’s address, this is called referencing (we create a pointer / reference)
*j = 100; // modify i’s wvalue through its address, this is called dereferencing
int k = *j; // obtain i’s wvalue through its address, this is called dereferencing

—
34 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

More on types: pointers

= Pointers, references, addresses?

int 1 = 42;

int *j = &i;
int k = *3;

std: :cout <<
std: :cout <L
std: :cout <L
std: :cout <L
std: :cout <L
std: :cout <L

35 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

inti=42;
I/ this is house |
= Every variable has a memory address /] 42 lives here

/l'i’s address is
&i

// get 1°s address, this is called referencing (we create a pointer / reference)

// obtain i’s value through its address, this is called dereferencing

&1 << '"\n';
i< "\n';

Variable’'s name | Address Content

& << "\n'; i Ox7fffab7c4770 |42

j << anty j Ox7fffab7c4778 | Ox7fffab7c4770
k Ox7fffab7c4774 |42

&k << '"\n';

k << "\n';

\

HEINZ NIXDORF INSTITUT ~ Fraunhofer

IEM

More on types: pointers

= |mportant

A pointer might be null

int *i = nullptr;

Meaning: the address does not exist / there is no address / i points to nothing

Don’t dereference a nullptr!
A pointer can be checked for nullptr

if (i == nullptr) { cout << "i holds the null pointer\n"; 1}

Or if you wish to pretend to be cool

if ('i) { cout << "1 holds the null pointer\n';

© Heinz Nixdorf Institut / Fraunhofer IEM

}

HEINZ NIXDORF INSTITUT

\

~ Fraunhofer

IEM

More on types: pointers

= Things to remember
= Declare a pointer type using *
= Take an address of a variable with &
= Dereference a pointer with *
= A pointer variable may hold the null pointer nullptr
= A pointer may dangle
int *p;
int g = *p; // please don't

= We will discuss techniques and tools to debug memory issues later on

\

HEINZ NIXDORF INSTITUT ~ Fraunhofer

37 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM
IEM

More on types: references

= Example
int 1 = 42;
int & = 1i;
= Declare a reference type by using &
= “You canuse j asifitwas i”
= References behave much like pointers, but
= Pointers can be re-assigned, references can not
= Pointers can be null and are allowed to dangle
= References always refer to a valid object
= Pointer’s address can be taken, references addresses cannot be taken
= Pointers allow for pointer arithmetic, references don’t (next lecture(s))
= References are internally implemented as pointers
= In general: references are much safer to use

\

38 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

References vs pointers

= When to use what and why do | need references and pointers?

» References
= Use references in functions’ parameter lists
= See next slides

= Pointers
= Use pointers to implement algorithms and data structures (e.g. linked lists)
= Use pointers for dynamic memory allocation
= Next lecture(s)

\

39 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Functions: parameter passing (and returning)

= How to pass and return huge amounts of data to and from a function?
= Consider a function that implements a matrix multiplication
matrix matrixMult (matrix a, matrix Db);
= Problem
» IfmatrixMult () is called, actual parameters are copied!
= Matrices can be huge, millions of elements - copying may be very expensive
» Processor is only copying data, rather than computing useful results
= Can we avoid copying large data into functions?
» Pass data by reference, rather than by value!
matrix matrixMult (matrix& a, matrix& b);
= Matrices are not copied, we just pass a reference to a matrix (which is an address)
= Matrix references can be used as if they were the matrices within the function’s body

\

40 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Functions: parameter passing (and returning)

matrix matrixMult (matrix& a, matrix& b);

= Problem

= Caution: If we modify the references a and b within the function we are changing the actual matrices

= How can we avoid accidental changes made to the matrices a and b?
= Use const references to avoid modifications
matrix matrixMult (const matrix& a, const matrix& b);
= Changes made to const references result in compiler errors
= How to return results if data to be returned is very large?
= Return by reference?
matrix& matrixMult (const matrix& a, const matrix& Db);
= No! Return by value, compilers use return value optimization (RVO)!
= Use:matrix matrixMult (const matrix& a, const matrix& b);

41 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT

\

~ Fraunhofer

IEM

Functions: parameter passing (and returning)

= |f your data is small (e.g. built-in types such as int)

= Pass and return by value (copy data)

= |f you do not know the size upfront (e.g. in case of containers) or deal with huge data
» Pass by reference (data itself stays where it is, no unnecessary copying)
» Use const if you do not wish to modify the data within the function

= Return by value (since all modern compilers support RVO)

\

42 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Recap

* Functions

= Recursion

= Conditional assignments

= constexpr functions

* inline functions

= Local and global variables

" std::string and std::vector<typename T>
= STL containers

= Containers in action: scalar product
= Values, pointers, references

= Parameter passing

—
44 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

Thank you for your attention
Questions?

-
HEINZ NIXDORF INSTITUT =%
UNIVERSITAT PADERBORN Za FraunhOfﬂ

