C++ PROGRAMMING

Lecture 1
Secure Software Engineering Group

Philipp Dominik Schubert

C

~ Fraunhofer

IEM

HEINZ NIXDORF INSTITUT

SECURE
SOFTWARE ENGINEERING




CONTENTS

More on data types
Expressions

const & constexpr
Statements

Control flow

o bk whRE

Recap

. . . HEINZ NIXDORF INSTITUT ]
2 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM UNIVERSITAT PADERBORN —Z Fraunhofﬂ




More on data types: built-in arrays

source program

= Avariable can hold a value of a certain type

Compiler input —»{Target Program |—= output

= Example

int 1 = 42;

target program Figure 1.2: Running the target program

Figure 1.1: A compiler

= What if | need 10 integers to solve a given task?

int one = 1;

int two = 2; = Static: at compile time

Dynamic: at runtime

and if | need 1000 integers or more? - More on memory later on
= Use arrays
= Built-in static arrays can store N objects of the same type

= Stored in one contiguous block of memory (one after another)

Compilers: Principles, Techniques, & Tools, Aho, Lam, Sethi, Ullman 2007

—
3 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



More on data types: built-in arrays

= Create an array of 4 integers
int arrayl[4];
array[0] = 10;
array[1l] = 20;
array[2] = 30;
array[3] = 40;
std::cout << array[0] << "\n';
std::cout << array[3] << "\n';
int number = arrayl[2];

= What does this print?

4 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

Problems
= An array does not know its size
» Increases probability for out-of-bounds
Use std::arrayor std: :vector instead
= Next time
Caution
= Never ever try something like
array[-3] = 12; or array[5] = 13;

= |f indices are out-of-bounds we have
undefined behavior

= At best
= Program crashes
= At worst
= Program continues execution

= Results are non-sense and you are
not even aware of that

\

HEINZ NIXDORF INSTITUT ~ Fraunhofer

IEM



Multi-dimensional arrays

= Arrays can have multiple dimensions = Analog to

ZZXZ

= Example: a 2D array (which is a matrix) s matrix = (1 matrix €

2)’
int matrix[2][2]; 3 4
matrix[0][0] = 1;
matrix[0][1] = 2;
matrix[1][0] = 3;
matrix[1][1] = 4;

int n = matrix[1][0]; // What is n's content?

= You can create arrays of arbitrary dimensions

\

5 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



Expressions

= “An expression is a sequence of operators and their operands, that specifies a computation. ...”
= “ .. Expression evaluation may produce a result and may generate side-effects.” en.cppreference.com]
= QOperands can be variables or literals

» Operators | | Common operators |
assignment increment arithmetic logical comparison member other
decrement access
+a
a=>b -a
a+=>b a+b
a-=>b a-»>b alb]
a==>,
a *=b a*b T *a
a/=b b a/b la gl s a(...)
a%= b a%$h ad&&b a->b a, b
a++ a>b
a& b ~a al||lb _ a.b ?
== a<=bhb
al=b ad&b b a->*b
a’”=b al|b a.*b
a<<=b a”™b
a>=>b a<<b>b
a>h

- - y | 4
6 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



Expressions

= Examples: arithmetic, consider int i = 5; = Evaluatesto
= -] -5
= 1 4+ 10 15
=i =5 % 2 % ) -15
= 6 * 0 36
= i 4
= 11 % 1 1
Common operators
I : increment : : ; ‘ . member
assignment £ arithmetic logical comparison siienia other
+a
a=>b -a
a+=b a+b
a-=>b a-»b alb]
a==>b
a*=b a*b e *a
a/=b b a/b la a =D sa a2
a%=b a%sh a & b a->b a, b
a++ a=>b :
aé& b i ~a al||lb ST a.b 2=
al=>b ad&b s b a->*b
a’™=b al|b a.*b
a<<=b a”™b
a>=b a<<b
7 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM as>>b




Expressions

= Examples: comparison, consider int i = 5; = Evaluates to
m i == 5 1 or true
= 1 > 100 0 or false
=] L= 5 1 or true
= 100 >= 99 1 or true
Common operators 7
assignment increment arithmetic logical comparison member other
decrement access
+a
a=>b -a
a+=b a+b
a-=b a-»b alb]
a==>b
a *= b a*b 4 *a
a/=b TJ_': a/b la aa !<_bb &a al.==)
a%=»b il a%h ad&&b 2o a->b a, b
a& b i ~a al||] b ST a.b S
al=b a&b a>:b a->*b
a"=h alb = a.*b
a<<=b a”™b
a>=>b a<<b
8 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM as>>b




Expressions

= Examples: comparison & logic, consider int 1 = 5;

= 1 (i == 5)
= (i > 100) || (1 == 5)
= (1 <= 5) && (-10 <= 1)
= false || true

) ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

= Evaluates to
0O or false
1 or true
1 or true
1l or true
Common operators
assignment increment arithmetic logical comparison member other
decrement 7 access
+a
a=>b -a
a+=>b a+b
a-=0b a-»b alb]
a==>b
a*=b a*b I *a
a/=b T"_L: a/b la aa '<_bb &a a(...)
a%=»b a%h ad&&b a->b a, b
a++ a>b
ad& b ~a al|| b _ a.b EE
a-- a<=b
al|=b a&b S 5a b a->*b
a"=h alb = a.*b
a<<=b a”™b
a>=>b a<<b
a>>hb




Expressions

= Keep operators' precedence in mind
* In doubt always use parentheses: ( expr )
» expr then gets evaluated first

|

'Precedence Operator Description Associativity
\ 1 Scope resolution Left-to-right |
. las+ a-- "Suffix/postﬁx increment and decrement
type() type{} |Functional cast
2 a() Function call
all] Subscript
-> Member access
++a --a Prefix increment and decrement Right-to-left
+a -a Unary plus and minus
I~ Logical NOT and bitwise NOT
(type) C-style cast
3 *a Indirection (dereference)
&a Address-of
sizeof Size-oftnote 1]
new new[] Dynamic memory allocation
delete delete[]|Dynamic memory deallocation
4 [x =% A"F;ointer—to—member ALeft-to-right
5 a*b a/b a%b "Multiplication, division, and remainder
6 a+b a-b Addition and subtraction
\ 7 << >> Bitwise left shift and right shift
2 < <= For relational operators < and = respectively
> >= For relational operators > and = respectively
\ 9 = I= For relational operators = and # respectively
10 a&b Bitwise AND
11 o Bitwise XOR (exclusive or)
12 | Bitwise OR (inclusive or)
13 & Logical AND
| 14 ] | Logical OR
a?h:c Ternary conditionaltmote 2 'Right-to-left
throw throw operator
= Direct assignment (provided by default for C++ classes)
15 += -= Compound assignment by sum and difference
*= [= %= Compound assignment by product, quotient, and remainder
<<= >>= Compound assignment by bitwise left shift and right shift
= "= |= | Compound assignment by bitwise AND, XOR, and OR
16 s - ‘Comma o . VLeft-to-n'ght




Operator = (assign) revisited

» = s the assignment operator
= Not the mathematical equals (check for equality would be ==
= Example

int value = 10;

= |n words: evaluate the expression on the right side and shove the result into the variable specified on the
left hand side!

int other = 2 * 2 + 3; // after this assignment other stores the value 7

= An assignment has a “left-hand side” and a “right-hand side”
= Lvalue and Rvalue
= An lvalue is an address (variable, reference, or pointer)
= An rvalue is an expression that can be evaluated (to a value)

\

11 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



Variables revisited: const qualifier

= Variables can be qualified with const

= Do qualify constant variables with const!

= Examples
const double PI = 3.1415926535; // ok: initialized at compile time
const int fortytwo = 21 + 21; // ok: initialized at compile time
const double value = calculateValue(); // ok: initialized at run time
const int 1i; // error: 1 is uninitialized const
PI = 3; // error: PI is const
fortytwo = 12; // error: fortytwo is const
double a = PI * 2; // ok: PI is only read
std::cout << fortytwo << "'\n'; // ok: fortytwo is only read

= Constant variables can be read, but “never” written to after initialization
» Use const as much as possible

= |t will prevent you from making mistakes

12 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT

[Figure taken from http://www.the007dossier.com/007dossier/page/Never-Say-Never-Again-Wallpaper]

~ Fraunhofer

IEM



Variables revisited: const qualifier

= Variables can be qualified with const
= Do qualify constant variables with const!
= Examples
const double PI = 3.1415926535;
const int fortytwo = 21 + 21;
const double wvalue = calculateValue();
const 1nt 1;
PI = 3;

fortytwo = 12;

double a = PI * 2;

std::cout << fortytwo << "\n';
= Constant variables can be read, but “never” written to after initialization
» Use const as much as possible

= |t will prevent you from making mistakes

\

13 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer

[Figure taken from http://www.the007dossier.com/007dossier/page/Never-Say-Never-Again-Wallpaper] IEM



Computing ahead of time: constexpr (at compile time)

» Use constexpr for constant expressions
= Variables can be constexpr
constexpr double d = 2.5 * 6.8 + 120;
constexpr int 1 = 12 * 12;
* Functions can be constexpraswell // next lecture
= Note: constexpr produces constant values (d and i cannot be changed, d and i are const)
= C++'s workflow
1. compile source code to executable program
2. run the executable
= Constant expressions are (may be) evaluated at compile time!
= Effectively: pre-computation of values
» Leads to increased performance (but slows down compile time)
» constexpr Similar to const but may be evaluated at compile time

\

13 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



Statements

= “Statements are fragments of the C++ program that are executed in sequence. The body of any function is
d Sequence Of Statements.” [en.cpp.reference.com]

= Example
int 1 =2 * 3 + 10; // this is a statement
int j = 10; // 3 1s 10
i= 73 // content of 1 is overwritten with j’s content
std::cout < 1 << "\n'; // prints 10

= Notethat i = j; overrides i’s content with whatever j’s content is
= QOrder of execution matters

\

14 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



Mathematical formulas and functions

= Use #include <cmath> to include mathematical functions

pow (), sqgrt(), abs(), sin(), cos(),

Have a look at http://en.cppreference.com/w/cpp/header/cmath

We will talk about functions in detail next time
For now just use them

= What is the C++ equivalentto x = V2, x € R
double x = sqrt(2);

= What is the C++ equivalenttoy = %e3, y ER

double vy =1 / 4 * exp(3);

© Heinz Nixdorf Institut / Fraunhofer IEM

HEINZ NIXDORF INSTITUT

\

~ Fraunhofer

IEM


http://en.cppreference.com/w/cpp/header/cmath

Statements

= C++ includes the following types of statements

1. Expression statements lleg.n = n + 1;

2. Compound statements (blocks) Il next

3. Selection statements /[ today

4. Iteration statements /[ today

5. Jump statements /[ e.g. return 0; in our main(), later on
6. Declaration statements /le.g.int 1i;

7. Try blocks / later on

8. Atomic and synchronized blocks /I later on

\

16 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



Compound Statements

= Compound statements or blocks are brace-enclosed
sequences of statements

= Example

{
int 1 = 42;
i+ 10;

int J

"Weldon't do that here”"

17 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

Scopes: note that something like this is possible
int 1 = 1;
{
std::cout << 1 << "\n';
int 1 = 2;
std::cout << 1 << "\n';
{
int 1 = 3;

std::cout << 1 << "\n';

std::cout << 1 << '"\n';

\

HEINZ NIXDORF INSTITUT ~ Fraunhofer

IEM



Scopes: { and }

= Avariable can be defined multiple times with the same name (usually don’t do it)

= Each name that appears in a C++ program is only valid in some portion of the source code called its
scope!

{
int 1 = 42;
int 3 = i 4+ 10;
}
= |f a variable goes out of scope it can no longer be accessed
= Example
{

int 1 = 42;

// 1 can be used in this block (its scope)
} // i goes out of scope at this point
i=13; // error: 1 can no longer be used

\

18 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



Statements

= C++ includes the following types of statements

1. Expression statements lleg.n=n+1;

2. Compound statements (blocks) // done!

3. Selection statements I/ next!

4. Iteration statements /[ today

5. Jump statements I/l e.g. “return O;” in our main(), later on
6. Declaration statements /[ e.g.inti=10;

7. Try blocks // later on

8. Atomic and synchronized blocks /I later on

\

19 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



Selection statements aka control flow

= Just a bunch of statements in sequence is not expressive enough
= How to express: “You pass if you achieve more than 50% in the exercises, otherwise you fail.”
= \We need conditional code execution
= Three kinds of selection statements exist

= Selection statements or control flow constructs in C++ are
= |f ( condition ) statement
= if ( condition ) statement else statement
= switch ( condition ) statement
= Note: a statement can also be a compound statement / block
= A condition is an expression that can be evaluated to true or false

\

20 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



If statement

= |f ( condition ) statement
= Example
int 1 = 10;
if (i < 100) {
std::cout << "1 1s smaller than 100\n";
}
= |f statements allow to execute specific code depending on a condition!
= |f only a “single” statement should be executed one can omit the braces { and }
int 1 = 10;
if (1 < 100)
std::cout << "1 1s smaller than 100\n";

"Weldon't do that here”"

\

=
21 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



If statement with else branch

= |f ( condition ) statement else statement

= Example
int 1 = 10;
if (1 < 100) {
std::cout << "1 is smaller than 100\n'";
} else {
std::cout << "1 1is bigger than 100\n";

}
» Braces not needed here: only one statement should be executed in each branch

int 1 = 10;
if (1 < 100)
std::cout €< "i is smaller than 100\n"; // the IF branch

else
std::cout << "i 1is bigger than 100\n"; // the ELSE branch

"Weldon't do that here”

\

HEINZ NIXDORF INSTITUT ~ Fraunhofer

22 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM
IEM



If statement

= There may be more than two branches

= Example
int 1

if (1

} else
std:
} else
std:
} else

std:

37

== ]_){
std::

cout < "1 18

if (1 = 2) {

rcout << "1 1s

if (i == 3) {

rcout << "1 1s

{

ccout << "1 1s

24 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

l\nvv;

2\n" ;

3\n";

something else\n";

HEINZ NIXDORF INSTITUT

\

~ Fraunhofer

IEM



Switch statement

= switch ( condition ) statement
= Similar to the if statement
= More convenient if many conditions need to be checked
= switch is optimized for this purpose
switch ( expression ) {
case expression:
// branch
break;

default:
/I default branch
break;

}

24 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM

\



Switch statement

= Switch in action
= Example on the right
= What number will be printed?
= What will be printed if cis "x'?

= C/C++: switch only works if the condition can be
evaluated to an integer

25 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

char ¢ =
switch (c) {

'D';

case 'A':
std: :cout

break;

case 'B':
std: :cout

break;

case 'C':
std: :cout

break;

case 'D':
std: :cout

break;

default:
std: :cout

break;

<<

<<

<<

<<

<<

-1 <

HEINZ NIXDORF INSTITUT

\\n';

\\n';

\\n';

\\n';

\\nl .

\

~ Fraunhofer

IEM



Statements

= C++ includes the following types of statements

1. Expression statements lleg.n=n+1,

2. Compound statements (blocks) // done!

3. Selection statements // done!

4. Iteration statements I/ next!

5. Jump statements I/l e.g. “return 0;” in our main(), later on
6. Declaration statements /[ e.g.inti=10;

7. Try blocks / later on

8. Atomic and synchronized blocks /I later on

\

26 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



lteration statements aka loops

= The previous types of statements are still not quite expressive enough
= Example calculate sum from 1 to 100
= int1=1+2+ 3+ ... 4+ 100;
= But if we want to sum from 1 to 10 or from 1 to 10000007
= What if your user can choose the upper end?
= You cannot write an infinite number of programs up-frond!
= |teration statements or loop constructs in C++
= while ( condition ) statement
= do statement while ( expression);
= for (init-statement (optional); condition (“optional”) ; expression (optional) ) statement
= for ( for-range-decl : for-range-init) statement
= Note a statement can be a compound statement / block

\

27 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



for loop

* Problem: sum up the numbers from 1 to 100. = What is going on?

int sum =1+ 2 + 3 + ... + 100; 1. iisinitialized (only once)

std::cout << "result: " << sum << "\n'; 2. condition is checked

= Better use aloop l. If true

= Structure of a for loop |. execute loop body

= for (init-statement (optional); ll. execute expression (usually
condition (optional) : iIncreases loop counter), go to 2.
expression (optional) ) statement Il Iffalse
int sum = 0: |. skip the loop

for (size t 1 = 1; 1 <= 100; ++1) {

sum += 1; // means: sum = sum + 1;

\

28 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer

IEM



for loops

= Problem: sum up the numbers from 12 to 100!
int sum = 0;
for (size t 1 =1; 1 <= 100; ++1) {
sum += 1 * 1i;
}
= QObserve: we can use the counter variable inside the loop!
» Loops can have arbitrary step widths

int sum = 0;

for (int 1 = 10, 1 < 4; 1 += 10) {
sum += 1i;

}

std::cout << sum << "\n';

29 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

HEINZ NIXDORF INSTITUT

\

~ Fraunhofer

IEM



Caution

= “Stupid is as stupid does.”
= What does this print?

int sum = 0;

for (int 1 = 1; 1 < 3; ++1i) {
sum += 1;
-1

}

std::cout << sum << '\n';

—
30 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



Another kind of for loop

for loop

for (init-statement (optional);
Condition (optional) ;

expression (optional) ) statement

Example
int sum = 0;
for (size t 1 =1; 1 <= 100;
sum += 1;
}
Ubiquitous

31 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

++1i) {

range for loop (or range for)
for ( for-range-decl : for-range-init ) statement
Example

int sum = 0;

std: :vector<int> vec = {1, 2 , 3};

for (int i : vec) {

sum += 1;

}
Useful when using containers // later on!
Detail: container has to implement
= begin() and end() // later on!

\

HEINZ NIXDORF INSTITUT ~ Fraunhofer
IEM



While loops

= while loop

= while ( condition ) statement

= Example
int sum = 0;
int 1 = 1;
while (1 <= 100) {
sum += 1i;
14++;
}
= Rejecting while loop

33 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

HEINZ NIXDORF INSTITUT

\

~ Fraunhofer

IEM



While loops

= Same as for for-loop: "Stupid is as stupid does.*
int 1 = 1;
while (1 < 2) {
std::cout << "not wise\n'";

}
= One needs to leave the loop at some point
= Condition (usually) needs to be evaluated to false at some point
= Sometimes a infinite loop is what you want
= Infinite for loop
for (;;) { // do stuff }
= Infinite while loop

while (true) { // do more stuff }

\

33 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



Another kind of while loop

= while loop
= while ( condition ) statement
= Example
int sum = 0;
int 1 = 1;
while (1 <= 100) {
sum += 1i;
14++;
}
= Rejecting while loop

= Body might not be executed

35 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

= do while loop
» do statement while ( expression);
= Example

int sum = 0;
int 1 = 300;
do {

sum += 1;

} while (i <= 100);

= Non-rejecting while loop!
= Body is executed at least once

HEINZ NIXDORF INSTITUT

\

~ Fraunhofer

IEM



4 basic loops

= For
= Range for
= While
= Do while
= All loops are equivalent
= Can be transformed into each other

= Use the most natural one for each situation!

\

36 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



Breaking loops

= Loops can be broken
» Use break keyword
= Break leaves the loop it is used in
= Example
int 1 = 1;
while (1 > 0) {
i +=1;

break;

30 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

[Image from http://matrix.wikia.com/]

HEINZ NIXDORF INSTITUT

\

~ Fraunhofer

IEM



Breaking loops

= Loops can be broken
» Use break keyword
= Break leaves the loop it is used in
= Very useful when combined with an if statement
= Example

int sensor value;
while (true) {
// do measurements

sensor value = getSensorValue() ;
1f (sensor value == 0) {

break;
}

}
// do other stuff

38 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM

[Image from http://matrix.wikia.com/]

HEINZ NIXDORF INSTITUT ~ Fraunhofer
IEM



Skipping loop iterations

= Loop iterations can be skipped
= Use continue keyword
= Causes a jump to the end of loop body
= Very useful when combined with an if statement
= Example
for (int 1 = 0; 1 < 10; i++) {
if (i '= 5) {

continue;

}
std::cout < 1 << " ';
} [Image from images.google.de]
= What will be printed? " break would have landed on the other roof

\

39 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



A note on nesting

= You can nest loops and if statements
= Example

for (int 1 = 0; 1 < 5; ++1) {
for (int J = 0; jJ < 5; ++73) {
std: :cout <L ;

}
std: :cout << ;

}

» What does this code print?
#A#HH
#AH#HH
#aH#HH
#H#HH
#aH##H

\

40 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



A note on nesting

= You can nest loops and if statements

= Example

int 1 = 15;
if (1 >= 10) {

if ((1 % 5) == 0) {
std::cout << "i is greater than 9 and dividable by 5\n";
} else {
std::cout << "1 1s greater than 9\n";
}
} else {
cout << "1 1s smaller than 10\n";

}
» What does this code print?

\

40 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



Algorithm and program

*= You now have a Turing-Complete language (we will discover more, later on)
= That is, you can compute everything that a Turing-Machine can compute
= That is, you can compute “everything” that is intuitively computable!
» https://de.wikipedia.org/wiki/Alan_Turing

= https://en.wikipedia.org/wiki/Turing machine
= “The Imitation Game”: http://www.imdb.com/title/tt2084970/
= Algorithm versus program

= An algorithm is a description on how to solve a problem
= A program is an algorithm formulated for the computer
= C++ programs are algorithms described using a bunch of statements

= You now have the first tools to formulate algorithms in C++

\

41 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM


https://de.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Turing_machine
http://www.imdb.com/title/tt2084970/

Algorithms, Maths & C++

= You can almost always translate mathematics to C++
= How to obtain a solution for a given task?
= Usually:
|. Start with a problem
lI. Abstract the problem and find an algorithm to solve the problem)
lll. Formulate algorithm in mathematics
V. Formulate mathematical algorithm in a programming language (e.g. C++)
V. The resulting program then solves the problem
= | will try to make links between mathematics and C++ whenever possible
= Mathematics and computer science / programming are very similar
= “Computer science is mathematics with electricity!”, Dirk Frettloh

\

42 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



Visual representation of the integral:

A fun example: calculating an integral -

3F

2 ¢
&

[
1 4
= Calculate fo 1452 dx #finclude <iostream> 1}
. #include <cmath> S
= Assumption: int main() { 02 04 06 08 10
= We don’t know how to calculate an long double integral val = 0.0;
. 4 long double x = 0.0;
antiderivative of f(x) = 77 const size t N = 1000000;
= Solution: use numerical integration 18 lines long double step_width =
_ _ _ std: :abs (0-1) /
= Use simple arithmetic static cast<long double>(N);

for (size t n = 0; n < N; ++n) {
// evaluate function a point x
integral val += 4 / (1 + x * x);
x += step width;

}

integral val /= N;

std::cout << integral val << '"\n';

return 0;

= A computer is very fast at arithmetic

\

43 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



Recap

= Built-in arrays

= Expressions

= Assignments

= Qualifiers

= Simple statements

= Mathematical formulas

= Scopes

= Statements
= Selection: if and switch
= |teration: for and while
= Nesting

= Algorithms, mathematics and computer science

\

44 ‘ © Heinz Nixdorf Institut / Fraunhofer IEM HEINZ NIXDORF INSTITUT % Fraunhofer
IEM



Thank you for your attention
Questions?

-
HEINZ NIXDORF INSTITUT =%
UNIVERSITAT PADERBORN Za FraunhOfﬂ



