
!

C++ PROGRAMMING

Lecture 1

Secure Software Engineering Group

Philipp Dominik Schubert

CONTENTS

1. More on data types

2. Expressions

3. const & constexpr

4. Statements

5. Control flow

6. Recap

© Heinz Nixdorf Institut / Fraunhofer IEM2

More on data types: built-in arrays

 A variable can hold a value of a certain type

 Example

int i = 42;

 What if I need 10 integers to solve a given task?

int one = 1;

int two = 2;

…

and if I need 1000 integers or more?

 Use arrays

 Built-in static arrays can store N objects of the same type

 Stored in one contiguous block of memory (one after another)

© Heinz Nixdorf Institut / Fraunhofer IEM3

 Static: at compile time

 Dynamic: at runtime

 More on memory later on

Compilers: Principles, Techniques, & Tools, Aho, Lam, Sethi, Ullman 2007

More on data types: built-in arrays

 Create an array of 4 integers

int array[4];

array[0] = 10;

array[1] = 20;

array[2] = 30;

array[3] = 40;

std::cout << array[0] << '\n';

std::cout << array[3] << '\n';

int number = array[2];

 What does this print?

 Problems

 An array does not know its size

 Increases probability for out-of-bounds

 Use std::array or std::vector instead

 Next time

 Caution

 Never ever try something like

array[-3] = 12; or array[5] = 13;

 If indices are out-of-bounds we have
undefined behavior

 At best

 Program crashes

 At worst

 Program continues execution

 Results are non-sense and you are
not even aware of that

© Heinz Nixdorf Institut / Fraunhofer IEM4

Multi-dimensional arrays

 Arrays can have multiple dimensions

 Example: a 2D array (which is a matrix)

int matrix[2][2];

matrix[0][0] = 1;

matrix[0][1] = 2;

matrix[1][0] = 3;

matrix[1][1] = 4;

int n = matrix[1][0]; // What is n's content?

 You can create arrays of arbitrary dimensions

 Analog to

 𝑚𝑎𝑡𝑟𝑖𝑥 =
1 2
3 4

, 𝑚𝑎𝑡𝑟𝑖𝑥 ∈ ℤ2×2

© Heinz Nixdorf Institut / Fraunhofer IEM5

Expressions

 “An expression is a sequence of operators and their operands, that specifies a computation. …”

 “… Expression evaluation may produce a result and may generate side-effects.” [en.cppreference.com]

 Operands can be variables or literals

 Operators

© Heinz Nixdorf Institut / Fraunhofer IEM6

Expressions

 Examples: arithmetic, consider int i = 5;

 -i

 i + 10

 i - 5 * 2 * 2

 6 * 6

 --i

 11 % i

 Evaluates to

-5

15

-15

36

4

1

© Heinz Nixdorf Institut / Fraunhofer IEM7

Expressions

 Examples: comparison, consider int i = 5;

 i == 5

 i > 100

 i <= 5

 100 >= 99

 Evaluates to

1 or true

0 or false

1 or true

1 or true

© Heinz Nixdorf Institut / Fraunhofer IEM8

Expressions

 Examples: comparison & logic, consider int i = 5;

 !(i == 5)

 (i > 100) || (i == 5)

 (i <= 5) && (-10 <= 1)

 false || true

 Evaluates to

0 or false

1 or true

1 or true

1 or true

© Heinz Nixdorf Institut / Fraunhofer IEM9

Expressions

 Keep operators' precedence in mind

 In doubt always use parentheses: (expr)

 expr then gets evaluated first

10

Operator = (assign) revisited

 = is the assignment operator

 Not the mathematical equals (check for equality would be ==)

 Example

int value = 10;

 In words: evaluate the expression on the right side and shove the result into the variable specified on the
left hand side!

int other = 2 * 2 + 3; // after this assignment other stores the value 7

 An assignment has a “left-hand side” and a “right-hand side”

 Lvalue and Rvalue

 An lvalue is an address (variable, reference, or pointer)

 An rvalue is an expression that can be evaluated (to a value)

© Heinz Nixdorf Institut / Fraunhofer IEM11

Variables revisited: const qualifier

 Variables can be qualified with const

 Do qualify constant variables with const!

 Examples

const double PI = 3.1415926535; // ok: initialized at compile time

const int fortytwo = 21 + 21; // ok: initialized at compile time

const double value = calculateValue(); // ok: initialized at run time

const int i; // error: i is uninitialized const

PI = 3; // error: PI is const

fortytwo = 12; // error: fortytwo is const

double a = PI * 2; // ok: PI is only read

std::cout << fortytwo << '\n'; // ok: fortytwo is only read

 Constant variables can be read, but “never” written to after initialization

 Use const as much as possible

 It will prevent you from making mistakes

© Heinz Nixdorf Institut / Fraunhofer IEM
12

[Figure taken from http://www.the007dossier.com/007dossier/page/Never-Say-Never-Again-Wallpaper]

Variables revisited: const qualifier

 Variables can be qualified with const

 Do qualify constant variables with const!

 Examples

const double PI = 3.1415926535; // ok: initialized at compile time

const int fortytwo = 21 + 21; // ok: initialized at compile time

const double value = calculateValue(); // ok: initialized at run time

const int i; // error: i is uninitialized const

PI = 3; // error: PI is const

fortytwo = 12; // error: fortytwo is const

double a = PI * 2; // ok: PI is only read

std::cout << fortytwo << '\n'; // ok: fortytwo is only read

 Constant variables can be read, but “never” written to after initialization

 Use const as much as possible

 It will prevent you from making mistakes

© Heinz Nixdorf Institut / Fraunhofer IEM
13

[Figure taken from http://www.the007dossier.com/007dossier/page/Never-Say-Never-Again-Wallpaper]

Computing ahead of time: constexpr (at compile time)

 Use constexpr for constant expressions

 Variables can be constexpr

constexpr double d = 2.5 * 6.8 + 120;

constexpr int i = 12 * 12;

 Functions can be constexpr as well // next lecture

 Note: constexpr produces constant values (d and i cannot be changed, d and i are const)

 C++’s workflow

1. compile source code to executable program

2. run the executable

 Constant expressions are (may be) evaluated at compile time!

 Effectively: pre-computation of values

 Leads to increased performance (but slows down compile time)

 constexpr similar to const but may be evaluated at compile time

© Heinz Nixdorf Institut / Fraunhofer IEM13

Statements

 “Statements are fragments of the C++ program that are executed in sequence. The body of any function is
a sequence of statements.” [en.cpp.reference.com]

 Example

int i = 2 * 3 + 10; // this is a statement

int j = 10; // j is 10

i = j; // content of i is overwritten with j’s content

std::cout << i << '\n'; // prints 10

 Note that i = j; overrides i’s content with whatever j’s content is

 Order of execution matters

© Heinz Nixdorf Institut / Fraunhofer IEM14

Mathematical formulas and functions

 Use #include <cmath> to include mathematical functions

 pow(), sqrt(), abs(), sin(), cos(), …

 Have a look at http://en.cppreference.com/w/cpp/header/cmath

 We will talk about functions in detail next time

 For now just use them

 What is the C++ equivalent to 𝑥 = 2, 𝑥 ∈ ℝ

double x = sqrt(2);

 What is the C++ equivalent to y =
1

4
𝑒3, 𝑦 ∈ ℝ

double y = 1 / 4 * exp(3);

© Heinz Nixdorf Institut / Fraunhofer IEM15

http://en.cppreference.com/w/cpp/header/cmath

Statements

 C++ includes the following types of statements

1. Expression statements // e.g. n = n + 1;

2. Compound statements (blocks) // next

3. Selection statements // today

4. Iteration statements // today

5. Jump statements // e.g. return 0; in our main(), later on

6. Declaration statements // e.g. int i;

7. Try blocks // later on

8. Atomic and synchronized blocks // later on

© Heinz Nixdorf Institut / Fraunhofer IEM16

Compound Statements

 Compound statements or blocks are brace-enclosed
sequences of statements

 Example

{

int i = 42;

int j = i + 10;

}

 Scopes: note that something like this is possible

int i = 1;

{

std::cout << i << '\n';

int i = 2;

std::cout << i << '\n';

{

int i = 3;

std::cout << i << '\n';

}

}

std::cout << i << '\n';

© Heinz Nixdorf Institut / Fraunhofer IEM17

Scopes: { and }

 A variable can be defined multiple times with the same name (usually don’t do it)

 Each name that appears in a C++ program is only valid in some portion of the source code called its
scope!

{

int i = 42;

int j = i + 10;

}

 If a variable goes out of scope it can no longer be accessed

 Example

{

int i = 42;

// i can be used in this block (its scope)

} // i goes out of scope at this point

i = 13; // error: i can no longer be used

© Heinz Nixdorf Institut / Fraunhofer IEM18

Statements

 C++ includes the following types of statements

1. Expression statements // e.g. n = n + 1;

2. Compound statements (blocks) // done!

3. Selection statements // next!

4. Iteration statements // today

5. Jump statements // e.g. ´return 0;´ in our main(), later on

6. Declaration statements // e.g. int i = 10;

7. Try blocks // later on

8. Atomic and synchronized blocks // later on

© Heinz Nixdorf Institut / Fraunhofer IEM19

Selection statements aka control flow

 Just a bunch of statements in sequence is not expressive enough

 How to express: “You pass if you achieve more than 50% in the exercises, otherwise you fail.”

 We need conditional code execution

 Three kinds of selection statements exist

 Selection statements or control flow constructs in C++ are

 if (condition) statement

 if (condition) statement else statement

 switch (condition) statement

 Note: a statement can also be a compound statement / block

 A condition is an expression that can be evaluated to true or false

© Heinz Nixdorf Institut / Fraunhofer IEM20

If statement

 if (condition) statement

 Example

int i = 10;

if (i < 100) {

std::cout << "i is smaller than 100\n";

}

 If statements allow to execute specific code depending on a condition!

 If only a “single” statement should be executed one can omit the braces { and }

int i = 10;

if (i < 100)

std::cout << "i is smaller than 100\n";

© Heinz Nixdorf Institut / Fraunhofer IEM21

If statement with else branch

 if (condition) statement else statement

 Example

int i = 10;

if (i < 100) {

std::cout << "i is smaller than 100\n";

} else {

std::cout << "i is bigger than 100\n";

}

 Braces not needed here: only one statement should be executed in each branch

int i = 10;

if (i < 100)

std::cout << "i is smaller than 100\n"; // the IF branch

else

std::cout << "i is bigger than 100\n"; // the ELSE branch

© Heinz Nixdorf Institut / Fraunhofer IEM22

If statement

 There may be more than two branches

 Example

int i = 3;

if (i == 1) {

std::cout << "i is 1\n";

} else if (i == 2) {

std::cout << "i is 2\n";

} else if (i == 3) {

std::cout << "i is 3\n";

} else {

std::cout << "i is something else\n";

}

© Heinz Nixdorf Institut / Fraunhofer IEM24

Switch statement

 switch (condition) statement

 Similar to the if statement

 More convenient if many conditions need to be checked

 switch is optimized for this purpose

switch (expression) {

case expression:

// branch

break;

…

default:

// default branch

break;

}

© Heinz Nixdorf Institut / Fraunhofer IEM24

Switch statement

 Switch in action

 Example on the right

 What number will be printed?

 What will be printed if c is 'X'?

 C/C++: switch only works if the condition can be
evaluated to an integer

© Heinz Nixdorf Institut / Fraunhofer IEM25

char c = 'D';

switch (c) {

case 'A':

std::cout << 1 << ‘\n';

break;

case 'B':

std::cout << 2 << ‘\n';

break;

case 'C':

std::cout << 3 << ‘\n';

break;

case 'D':

std::cout << 4 << ‘\n';

break;

default:

std::cout << -1 << ‘\n';

break;

}

Statements

 C++ includes the following types of statements

1. Expression statements // e.g. n = n + 1;

2. Compound statements (blocks) // done!

3. Selection statements // done!

4. Iteration statements // next!

5. Jump statements // e.g. ´return 0;´ in our main(), later on

6. Declaration statements // e.g. int i = 10;

7. Try blocks // later on

8. Atomic and synchronized blocks // later on

© Heinz Nixdorf Institut / Fraunhofer IEM26

Iteration statements aka loops

 The previous types of statements are still not quite expressive enough

 Example calculate sum from 1 to 100

 int i = 1 + 2 + 3 + ... + 100;

 But if we want to sum from 1 to 10 or from 1 to 1000000?

 What if your user can choose the upper end?

 You cannot write an infinite number of programs up-frond!

 Iteration statements or loop constructs in C++

 while (condition) statement

 do statement while (expression);

 for (init-statement (optional); condition (“optional”) ; expression (optional)) statement

 for (for-range-decl : for-range-init) statement

 Note a statement can be a compound statement / block

© Heinz Nixdorf Institut / Fraunhofer IEM27

for loop

 Problem: sum up the numbers from 1 to 100.

int sum = 1 + 2 + 3 + ... + 100;

std::cout << "result: " << sum << '\n';

 Better use a loop

 Structure of a for loop

 for (init-statement (optional);

condition (optional) ;

expression (optional)) statement

int sum = 0;

for (size_t i = 1; i <= 100; ++i) {

sum += i; // means: sum = sum + i;

}

 What is going on?

1. i is initialized (only once)

2. condition is checked

I. If true

I. execute loop body

II. execute expression (usually
increases loop counter), go to 2.

II. If false

I. skip the loop

© Heinz Nixdorf Institut / Fraunhofer IEM28

for loops

 Problem: sum up the numbers from 12 𝑡𝑜 1002!

int sum = 0;

for (size_t i = 1; i <= 100; ++i) {

sum += i * i;

}

 Observe: we can use the counter variable inside the loop!

 Loops can have arbitrary step widths

int sum = 0;

for (int i = 10; i < 4; i += 10) {

sum += i;

}

std::cout << sum << '\n';

© Heinz Nixdorf Institut / Fraunhofer IEM29

Caution

 “Stupid is as stupid does.”

 What does this print?

int sum = 0;

for (int i = 1; i < 3; ++i) {

sum += i;

--i;

}

std::cout << sum << '\n';

© Heinz Nixdorf Institut / Fraunhofer IEM30

Another kind of for loop

 for loop

 for (init-statement (optional);

Condition (optional) ;

expression (optional)) statement

 Example

int sum = 0;

for (size_t i = 1; i <= 100; ++i) {

sum += i;

}

 Ubiquitous

 range for loop (or range for)

 for (for-range-decl : for-range-init) statement

 Example

int sum = 0;

std::vector<int> vec = {1, 2 , 3};

for (int i : vec) {

sum += i;

}

 Useful when using containers // later on!

 Detail: container has to implement

 begin() and end() // later on!

© Heinz Nixdorf Institut / Fraunhofer IEM31

While loops

 while loop

 while (condition) statement

 Example

int sum = 0;

int i = 1;

while (i <= 100) {

sum += i;

i++;

}

 Rejecting while loop

© Heinz Nixdorf Institut / Fraunhofer IEM33

While loops

 Same as for for-loop: "Stupid is as stupid does.“

int i = 1;

while (i < 2) {

std::cout << "not wise\n";

}

 One needs to leave the loop at some point

 Condition (usually) needs to be evaluated to false at some point

 Sometimes a infinite loop is what you want

 Infinite for loop

for (;;) { // do stuff }

 Infinite while loop

while (true) { // do more stuff }

© Heinz Nixdorf Institut / Fraunhofer IEM33

Another kind of while loop

 while loop

 while (condition) statement

 Example

int sum = 0;

int i = 1;

while (i <= 100) {

sum += i;

i++;

}

 Rejecting while loop

 Body might not be executed

 do while loop

 do statement while (expression);

 Example

int sum = 0;

int i = 300;

do {

sum += i;

} while (i <= 100);

 Non-rejecting while loop!

 Body is executed at least once

© Heinz Nixdorf Institut / Fraunhofer IEM35

4 basic loops

 For

 Range for

 While

 Do while

 All loops are equivalent

 Can be transformed into each other

 Use the most natural one for each situation!

© Heinz Nixdorf Institut / Fraunhofer IEM36

Breaking loops

 Loops can be broken

 Use break keyword

 Break leaves the loop it is used in

 Example

int i = 1;

while (i > 0) {

i += 1;

break;

}

© Heinz Nixdorf Institut / Fraunhofer IEM36

[Image from http://matrix.wikia.com/]

Breaking loops

 Loops can be broken

 Use break keyword

 Break leaves the loop it is used in

 Very useful when combined with an if statement

 Example

int sensor_value;

while (true) {

// do measurements

sensor_value = getSensorValue();

if (sensor_value == 0) {

break;

}

}

// do other stuff

© Heinz Nixdorf Institut / Fraunhofer IEM38

[Image from http://matrix.wikia.com/]

Skipping loop iterations

 Loop iterations can be skipped

 Use continue keyword

 Causes a jump to the end of loop body

 Very useful when combined with an if statement

 Example

for (int i = 0; i < 10; i++) {

if (i != 5) {

continue;

}

std::cout << i << ' ';

}

 What will be printed?  break would have landed on the other roof

© Heinz Nixdorf Institut / Fraunhofer IEM39

[Image from images.google.de]

A note on nesting

 You can nest loops and if statements

 Example

for (int i = 0; i < 5; ++i) {

for (int j = 0; j < 5; ++j) {

std::cout << '#';

}

std::cout << '\n';

}

 What does this code print?

#####

#####

#####

#####

#####

© Heinz Nixdorf Institut / Fraunhofer IEM40

A note on nesting

 You can nest loops and if statements

 Example

int i = 15;

if (i >= 10) {

if ((i % 5) == 0) {

std::cout << "i is greater than 9 and dividable by 5\n";

} else {

std::cout << "i is greater than 9\n";

}

} else {

cout << "i is smaller than 10\n";

}

 What does this code print?

© Heinz Nixdorf Institut / Fraunhofer IEM40

Algorithm and program

 You now have a Turing-Complete language (we will discover more, later on)

 That is, you can compute everything that a Turing-Machine can compute

 That is, you can compute “everything” that is intuitively computable!

 https://de.wikipedia.org/wiki/Alan_Turing

 https://en.wikipedia.org/wiki/Turing_machine

 “The Imitation Game”: http://www.imdb.com/title/tt2084970/

 Algorithm versus program

 An algorithm is a description on how to solve a problem

 A program is an algorithm formulated for the computer

 C++ programs are algorithms described using a bunch of statements

 You now have the first tools to formulate algorithms in C++

© Heinz Nixdorf Institut / Fraunhofer IEM41

https://de.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Turing_machine
http://www.imdb.com/title/tt2084970/

Algorithms, Maths & C++

 You can almost always translate mathematics to C++

 How to obtain a solution for a given task?

 Usually:

I. Start with a problem

II. Abstract the problem and find an algorithm to solve the problem)

III. Formulate algorithm in mathematics

IV. Formulate mathematical algorithm in a programming language (e.g. C++)

V. The resulting program then solves the problem

 I will try to make links between mathematics and C++ whenever possible

 Mathematics and computer science / programming are very similar

 “Computer science is mathematics with electricity!”, Dirk Frettlöh

© Heinz Nixdorf Institut / Fraunhofer IEM42

A fun example: calculating an integral

 Calculate 0׬
1 4

1+𝑥2
𝑑𝑥

 Assumption:

 We don’t know how to calculate an

antiderivative of 𝑓 𝑥 =
4

1+𝑥2

 Solution: use numerical integration 18 lines

 Use simple arithmetic

 A computer is very fast at arithmetic

#include <iostream>

#include <cmath>

int main() {

long double integral_val = 0.0;

long double x = 0.0;

const size_t N = 1000000;

long double step_width =

std::abs(0-1) /

static_cast<long double>(N);

for (size_t n = 0; n < N; ++n) {

// evaluate function a point x

integral_val += 4 / (1 + x * x);

x += step_width;

}

integral_val /= N;

std::cout << integral_val << '\n';

return 0;

}

© Heinz Nixdorf Institut / Fraunhofer IEM43

Recap

 Built-in arrays

 Expressions

 Assignments

 Qualifiers

 Simple statements

 Mathematical formulas

 Scopes

 Statements

 Selection: if and switch

 Iteration: for and while

 Nesting

 Algorithms, mathematics and computer science

© Heinz Nixdorf Institut / Fraunhofer IEM44

Thank you for your attention
Questions?

