
Lecture 0

Secure Software Engineering Group

Philipp Dominik Schubert

C++ Programming

The C++ Programming Language

C++ is easy.

It’s like riding a bike.

Except the bike is on fire,

and you’re on fire

and everything is on fire

because you’re in hell.

The C++ Programming Language

1. Organizational matter

2. Course outline

3. History of C++

4. C++ compilers

5. A “Hello, World!” program

6. Setting up a development environment

7. Basic terms & concepts

Contents

Organization

 “Rooms”

 Lecture: recorded (Panda/YouTube), available on Fridays ~14:00

 Exercises: livestream (Twitch), Fridays 16:00-18:00

 Instructor

 Philipp Schubert @home in

 E-Mail philipp.schubert@upb.de

 Web https://www.hni.uni-paderborn.de/sse/lehre/cppp/

 Prerequisites

 No programming experience

 Knowledge on how to use a computer

 Text editor

 Operating system (Linux/Windows/Mac)

mailto:philipp.schubert@upb.de
https://www.hni.uni-paderborn.de/sse/lehre/cppp/

Organization

 Benefits

 Be confident to take advanced courses that require C++

 Realize programming projects

 Will be useful for computational thinking

 Better understanding on how a computer works

 Well-paid jobs

 Studium Generale (SG) EIM-I

 Computer science students will not receive credit points

 Electrical engineering students will not receive credit points

 When in doubt ask your examination office

 All (?/most) other students will receive 4 credit points

 Everyone obtains a nice certificate for their CV

[Figures taken from https://c2.staticflickr.com/8/7693/17123251389_bed3c3a1ba_b.jpg, https://theboostcpplibraries.com/

Organization

 Some of you have not yet registered?

 Register to this course in Panda

 https://panda.uni-paderborn.de/course/view.php?id=22691

 I will send emails with additional materials

 External students

 https://www.hni.uni-paderborn.de/sse/lehre/cppp

https://panda.uni-paderborn.de/course/view.php?id=22691
https://www.hni.uni-paderborn.de/sse/lehre/cppp

1. Organizational matter

2. Course outline: now with even more C++

3. History of the C++ language

4. A “Hello, World!” program

5. C++ compilers

6. Setting up a development environment

7. Basic terms & concepts

Contents

Course outline

 Basic introduction

 History of C & C++

 Compilers

 Development environments

 Basic terms and concepts

 Basic C++ programming

 Primitive data types, strings, vectors, arrays, pointers

 Expressions, statements

 Structures, unions, enumerations

 Functions, classes

Course outline

 How to organize a project

 Tooling

 Namespaces

 Forward declarations

 C++’ Standard Template Library (STL)

 IO, containers, generic algorithms

 Static / dynamic memory

 Smart pointers

 Advanced techniques

 Copy control, standard class members

 Operator overloading

 Object-oriented programming

 Templates and generic programming

Course outline

 Useful libraries

 OpenMP, OpenCV, OpenCL, OpenGL/Vulkan, …

 Qt

 Google test

 Google protobuf

 Abseil

 Boost

 And other useful libraries

 Where to find the desired information you need

 Don’t reinvent the wheel, use libraries

Literature

 [1] A Tour of C++, Stroustrup 2013

 [2] Programming – Principles and Practice using C++, Stroustrup 2015

 [3] The C++ Programming Language (4th Edition), Stroustrup 2013

 [4] C++ reference, http://en.cppreference.com/

 [5] CppCon, https://www.youtube.com/user/cppcon/

 [6] Effective Modern C++, Meyers 2015

 [7] Online tutorial: http://www.cplusplus.com/doc/tutorial/

 Various different input channels are important:

 Lecture

 Exercises

 I’ll try to make links to books and YouTube videos

 Talk to each other and look things up

http://en.cppreference.com/
https://www.youtube.com/user/cppcon/
http://www.cplusplus.com/doc/tutorial/

Exercises

 Weekly exercises

 Theoretical and practical exercises

 Submissions are graded

 You need to achieve 50% during semester

 Final project

 Solve a programming task

 Certificate (+ credit points)

 Pass exercises + project solved

 No final exams

 Plagiarism is prohibited (Plage Source Code Copying Detector https://sourceforge.net/projects/plage/)

 Adhere to the notes on the exercise sheets

 Questions so far?

https://sourceforge.net/projects/plage/

1. Organizational matter

2. Course outline

3. History of C++

4. C++ compilers

5. A “Hello World” program

6. Setting up a development environment

7. Basic terms & concepts

Contents

What is C++?

What is C++?

Stroustrup: The Essence of C++

 Embedded systems

 Low level

 A random collection of features

 Class hierarchies

 Multi-paradigms

 A failed attempt to build Java

 It’s C

 Too complicated

 An object-oriented programming language

 Generic Programming

 Template meta-programming

 Buffer overflows

 Classes

 Too big

 Host for DSLs

 A hybrid language

What is C++?

Advice

 Don’t be afraid

 Learning a new language takes time

 Practice, practice, practice

 Read a lot about it (books and C++ forums / as well as code)

 Do the exercises

 Always ask yourself: why does this work?

 If you are curious about something use google

 … and share your knowledge and discuss with friends

 Programming will be fun when understood

History of C++

 All started with BCPL

 Basic Combined Programming Language

 Has no data types

 B – a language to implement operating systems

 C – better than B

 Brian Wilson Kernighan

 Dennis MacAlister Ritchie

 C with Classes

 Bjarne Stoustrup

 C++

 Dynamically evolving

 C++14/C++17/C++20

[Figure and images taken from images.google.de/ and A Tour of C++, Stroustrup 2013]

History of C++

 But why are we not learning C++20?

 I cannot teach five courses in one

 Adaption needs time

 Concepts and ideas first

 Compiler implementations follow

 // void …

 Industry usually adapts ~ 5-10 years later

 There are reasons for that

 Concepts have to be proven as useful

 Compilers have to mature over time

[Figure from A Tour of C++, Stroustrup 2013]

History of C++

 BCPL, B, C,

 Why not D after C?

 C was and is still tremendously successful

 Lots of existing code was and is still written in C

 Don’t break compatibility!

 Be an increment rather than a new language

 A language called D exists

 D is no longer compatible with C

 Be aware: Modern C++ is not C

[Figure from A Tour of C++, Stroustrup 2013]

1. Organizational matter

2. Course outline

3. History of C++

4. C++ compilers

5. A “Hello, World!” program

6. Setting up a development environment

7. Basic terms & concepts

Contents

What is a compiler?

Compilers: Principles, Techniques, & Tools, Aho, Lam, Sethi, Ullman 2007

Are there other forms? Interpreter

Compilers: Principles, Techniques, & Tools, Aho, Lam, Sethi, Ullman 2007

Even more: hybrid compilers

Compilers: Principles, Techniques, & Tools, Aho, Lam, Sethi, Ullman 2007

C++ compilers

 Clang

 Compiler front-end for

C-like languages (including

C and C++)

 Used by Google, Apple, Oracle …

 Started as a Ph.D. thesis by Chris

Lattner

 Stable version in 2009

 Part of a reusable compiler

infrastructure (LLVM project)

 Written in C++

 Gnu Compiler Collection GCC

 Includes C and C++ front-ends

 Standard on most Linux dists.

 “Most used C/C++ compiler in the world”

 Fist stable release was v1.17 (1988)

 Monolithic design

 Written by bootstrapping

 Written by something else until its

powerful enough to compile itself

There are a lot more: Intel icc, IBM C++, MSVS C++, Oracle ++, Apple C++, Bloodshed Dev-C++, EDG C++

[Figures from gcc.gnu.org and clang.llvm.org]

GCC and Clang are language processing systems

Compilers: Principles, Techniques, & Tools, Aho, Lam, Sethi, Ullman 2007

 C++ is (usually) a compiled

language

 C++ compilers are language

processing systems /

compiler tool chains

Remark on what follows

 “Keep simple things simple,

as simple as possible, but not simpler!” (Einstein)

 Problem: where to start when learning a programming language?

 It all seems like magic

 In order to be able to start at all we have to …

1. take certain things for granted

2. learn the WHY over time

1. Organizational matter

2. Course outline

3. History of C++

4. C++ compilers

5. A “Hello, World!” program

6. Setting up a development environment

7. Basic terms & concepts

Contents

A “Hello, World!” program

int main() { return 0; }

or int main() {}

#include <iostream>

// This function prints Hello, World!

int main(int argc, char **argv) {

std::cout << "Hello, World!\n";

return 0;

}

 Shortest valid C++ program

 A “Hello, World!” program

 Uses a header file

 A comment

 main() function (with arguments)

 Uses a namespace

 :: scope and << shift operator

 Uses a string literal and a variable (cout)

 return 0; a value that is returned to the OS

 ‘0’ indicates success

 Values other than ‘0’ indicate failure

A “Hello, World!” program

Edit a text file, e.g. ‘hello.cpp’, with the following

contents:

#include <iostream>

int main(int argc, char **argv){

std::cout << "Hello, World!\n";

return 0;

}

 Tell the compiler to translate ‘hello.cpp’ into

executable machine code

 Command:

 cc hello.cpp –o hello

 You can execute the program ‘hello’ with

./hello

 Replace cc with g++ or clang++

A “Hello, World!” program

Edit a text file, e.g. ‘hello.cpp’, with the following

contents:

#include <iostream>

int main(int argc, char **argv){

std::cout << "Hello, World!\n";

return 0;

}

 Some useful compiler flags

 -Wall turns on compiler warning

 -Wextra turns on even more warnings

 -g insert debugging symbols

 -Ox turn on compiler optimization

(x is a number: 0,1,2,3)

 -o specify the output file

 -std=X specify the C++ standard

e.g. -std=c++17 or

-std=c++20

 E.g.

g++ -Wall –Wextra –std=c++17 hello.cpp –o hello

A “Hello, World!” program

#include <iostream>

int main(int argc, char **argv) {

std::cout << "Hello, World!\n";

return 0;

}

 #-directives are instructions for the preprocessor

 Preprocessor runs over the program first

 Then compiler starts its job

 #include directives just perform textual

insertion

 std:: is a namespace

 Namespaces hold code

 Helps to avoid collisions (e.g. variable

names, function names, …)

[Figure from Compilers: Principles, Techniques, & Tools, 2007]

A “Hello, World!” program

#include <iostream>

int main(int argc, char **argv) {

std::cout << "Hello, World!\n";

return 0;

}

 Compiler option –S shows the assembly code

 cc hello.cpp –S –o hello.as

.file "hello.cpp"

.local _ZStL8__ioinit

.comm _ZStL8__ioinit,1,1

.section .rodata

.LC0:

.string "Hello World"

.text

.globl main

.type main, @function

main:

.LFB971:

.cfi_startproc

pushq %rbp

.cfi_def_cfa_offset 16

.cfi_offset 6, -16

movq %rsp, %rbp

.cfi_def_cfa_register 6

subq $16, %rsp

movl %edi, -4(%rbp)

movq %rsi, -16(%rbp)

movl $.LC0, %esi

movl $_ZSt4cout, %edi

call _ZStlsISt11char_traitsIcEERSt13basic_ostreamIcT_ES5_PKc

movl $_ZSt4endlIcSt11char_traitsIcEERSt13basic_ostreamIT_T0_ES6_, %esi

movq %rax, %rdi

call _ZNSolsEPFRSoS_E

movl $0, %eax

…… // code still continues

[Figure from Compilers: Principles, Techniques, & Tools, 2007]

A “Hello, World!” program

#include <iostream>

int main(int argc, char **argv) {

std::cout << "Hello, World!\n";

return 0;

}

 Compile to binary directly

 cc hello.cpp –o hello

 Content of hello looks like that

[Figure from Compilers: Principles, Techniques, & Tools, 2007]

1. Organizational matter

2. Course outline

3. History of C++

4. C++ compilers

5. A “Hello, World!” program

6. Setting up a development environment

7. Basic terms & concepts

Contents

Calling the compiler by hand is wasteful

 Integrated Development Environment (IDE)

 Handles the project and corresponding

source files for you

 Handles compiler invocations

 Easier to use than Makefile, CMake, etc.

 Will find syntax errors on-the-fly

 More complex tasks are painful

 Lack of control

 Hides complexity

 I’m using a combination of both!

 Makefile, CMake, and friends

 Help to organize a software’s source code

 Text files containing rules that describe

how to invoke the compiler

 Rules are read, identified, and executed

on-demand

 Flexible and powerful

 Hard to write for complex tasks

 Start with a template

 You see what’s going on

 Nothing is hidden under the carpet

Makefile, an example Project directory: MyProject/

 Makefile

PROGNAME := hello

CC := g++

FLAGS := -std=c++17

FLAGS += -Wall

all: main.cpp

$(CC) $(FLAGS) *.cpp -o $(PROGNAME)

clean:

rm -f $(PROGNAME)

 hello.cpp:

#include <iostream>

int main() {

std::cout << "Hello, World!\n";

return 0;

}

 Using the compiler ‘by hand’ is fiddly

 Use files describing the compiler commands

 Makefile

 Contains executable “targets”

 Consist of a bunch of declarative rules

 Processed by make

 Flexible

 Easy to use

 Hard to write

 There are books on make

Integrated Development Environment (IDE) and other editors

 Visual Studio Code

 Compact editor

 Windows / Linux / Mac

 Or use vim, emacs, etc. (hardcore ;-)

 Use whatever feels best to you

 Depending on your programming

level and experience

[Figures taken from eclipse.org and code.visualstudio.com]

Set up a development environment

#include <iostream>

int main() {

cout << "Hello, World!\n";

return 0;

}

 Set up a development environment?

 I will provide a virtual machine

 Password: cppp

 Ubuntu 20.04, ~20 GB (sorry)

 Ships with everything that is needed

 Remark on compiler errors

 Errors are the default case

 Don’t panic and read them

 Read them carefully

 Google will help

 So does stack overflow

(a programming forum)

https://uni-paderborn.sciebo.de/s/VKRtFN88P23PMCs

1. Organizational matter

2. Course outline

3. History of the C++ language

4. C++ compilers

5. A “Hello World” program

6. Setting up a development environment

7. Basic terms & concepts

Contents

Primitive / built-in data types

 Boolean types

 bool

 Can hold true or false

 Character types

 char

 Integer types

 int

 Modifiers and sizes (integer types only)

 signed and unsigned

 short / long / long long

 Floating point types

 float

 double

 long double

[Figure taken from Wikipedia]

Integer encoding

 unsigned char

 1 byte = 8 bit

 Dual number encoding with unsigned

Decimal value: 1 ∙ 27 + 0 ∙ 26 + 1 ∙ 25 + 1 ∙ 24 + 0 ∙ 23 + 0 ∙ 22 + 1 ∙ 21 + 1 ∙ 20

= 128 + 32 + 16 + 2 + 1 = 179

1 0 1 1 0 0 1 1

Integer encoding

 signed char or char

 1 byte = 8 bit

 Two’s complement encoding with signed or as default

 Highest bit encodes sign

 Other bits encode value

 Here: sign bit 1, number is negative: take two’s complement (negate and add 1)

Decimal value: 1 ∙ 26 + 0 ∙ 25 + 0 ∙ 24 + 1 ∙ 23 + 1 ∙ 22 + 0 ∙ 21 + 1 ∙ 20 = 64 + 8 + 4 + 1 = 77 → −77

1 0 1 1 0 0 1 1

Add one

0011001

1011001

-

-

Take complement

Floating point number encoding

 IEEE-754 single-precision binary floating-point format

 IEEE-754 double-precision binary floating-point format

 Remark

 Use double as default, float usually far too imprecise

 Floating point numbers are not distributed equidistant

[Figures from Wikipedia]

Comments in C++

 Comments tell other people what your code does

 Comments tell yourself what your code does

 Or at least what it is supposed to do

 Code can be hard to understand

 Examples

 // a single-line comment

 /*

A multi-line

comment

*/

 /* … */

… *

… */ this is wrong

Integer literals in C++

// int decimal

// int decimal

// long, decimal

// unsigned int, decimal

// unsigned long, decimal

// int, octal

// int, hexadecimal

// unsigned long, hexadecimal

 100

 123456

 5L

 123u

 777uL

 -02O

 0x1fff

 0x1ffful

Character literals in C++

// character A

// symbol *

// end of a string

// new line

// tabulator

// apostrophe

// backslash

// a string literal

 'A'

 '*'

 '\0'

 '\n'

 '\t'

 '\''

 '\\‘

String literals in C++

 "This is a string literal!"

 More on strings later

Floating-point literals in C++

// double

// double

// double

// double

// float

// long double

 -9.876

 123.456E-7

 1e12

 .001

 1.23f

 1.23L

Defining variables in C++

int main() {

// see left side

return 0;

}

 Initialize your variables, unless you know what
you are doing!

 Variables have a

 Type

 Name

 Optional: an initial value

int i = 42;

int j;

int k = 10, l = 42, m;

double d = 1;

double e;

double f = 1.23456;

float g = 12.5f;

float h = 42.13;

char c = 'A';

char c[] = "A string"; // later on

char *c = "Another string"; // later on

char x = -10;

unsigned int ui = 123;

unsigned int huge = -13; // DON'T!!!

Variables in C++

 unsigned int huge = -13; // DON'T!!!

 Dangerous

 Integer overflow

 C++ is famous for its undefined behavior

 C++ standard allows undefined behavior in some situations

int i;

int j = i + 42;

 Anything can happen

 Depends on the compiler’s implementation

 Why?

 Compilers can produce faster machine code when

assuming that certain things cannot happen

[Figure taken from https://www.reddit.com/r/ProgrammerHumor/comments/8p54sk/reporting_errors/]

Variables in C++

#include <vector>

// C++98 style

std::vector<int> v;

v.push_back(1);

v.push_back(2);

v.push_back(3);

for (std::vector<int>::iterator it =

v.begin(); it != v.end(); ++it) {

std::cout << *it << '\n';

}

// using modern C++

std::vector<int> w = {1, 2, 3};

for (auto i : w) {

std::cout << i << '\n';

}

 auto keyword

 Automatic type deduction

 Compiler finds the correct type

 Always be verbose

 If type name gets ‘too long’ or type

is obvious use auto

 What type is x?

 auto x = 13L; // long

 auto x = 1.2345; // double

Making a point: there are ~50 ways to initialize a simple integer

 int a = 1;

 int b(2);

 int c{3};

 int d = {4};

 auto i = 5;

 auto j(6);

 auto k{7};

 auto l = {8};

IO streams

 Example

#include <iostream>

int main() {

int i = 0;

std::cout<< "Enter an integer: ";

std::cin >> i;

std::cout<< "The value of i is: "

<< i << '\n';

return 0;

}

 #include <iostream>

 Part of the STL

 Content lives in namespace std

 Use std::

 Important variables

 cin standard input stream

 cout standard output stream

 cerr standard error stream

 clog general information

 << and >> are shift operators defined

(i.e., overloaded) on the stream variables

Recap

 Course outline

 What is C++?

 History of C++

 Compilers

 “Hello, World!”

 Built-in types

 Information encoding

 Variables

 IO streams

 Any questions?

And now?

 Quick demo: the development environment and how

to write a “Hello, World!” program

1. Visual Studio Code

2. How to get a C++ job?

Questions?

Thank you for your attention

