
Lecture 0

Secure Software Engineering Group

Philipp Dominik Schubert

C++ Programming

The C++ Programming Language

C++ is easy.

It’s like riding a bike.

Except the bike is on fire,

and you’re on fire

and everything is on fire

because you’re in hell.

The C++ Programming Language

1. Organizational matter

2. Course outline

3. History of C++

4. C++ compilers

5. A “Hello, World!” program

6. Setting up a development environment

7. Basic terms & concepts

Contents

Organization

 “Rooms”

 Lecture: recorded (Panda/YouTube), available on Fridays ~14:00

 Exercises: livestream (Twitch), Fridays 16:00-18:00

 Instructor

 Philipp Schubert @home in

 E-Mail philipp.schubert@upb.de

 Web https://www.hni.uni-paderborn.de/sse/lehre/cppp/

 Prerequisites

 No programming experience

 Knowledge on how to use a computer

 Text editor

 Operating system (Linux/Windows/Mac)

mailto:philipp.schubert@upb.de
https://www.hni.uni-paderborn.de/sse/lehre/cppp/

Organization

 Benefits

 Be confident to take advanced courses that require C++

 Realize programming projects

 Will be useful for computational thinking

 Better understanding on how a computer works

 Well-paid jobs

 Studium Generale (SG) EIM-I

 Computer science students will not receive credit points

 Electrical engineering students will not receive credit points

 When in doubt ask your examination office

 All (?/most) other students will receive 4 credit points

 Everyone obtains a nice certificate for their CV

[Figures taken from https://c2.staticflickr.com/8/7693/17123251389_bed3c3a1ba_b.jpg, https://theboostcpplibraries.com/

Organization

 Some of you have not yet registered?

 Register to this course in Panda

 https://panda.uni-paderborn.de/course/view.php?id=22691

 I will send emails with additional materials

 External students

 https://www.hni.uni-paderborn.de/sse/lehre/cppp

https://panda.uni-paderborn.de/course/view.php?id=22691
https://www.hni.uni-paderborn.de/sse/lehre/cppp

1. Organizational matter

2. Course outline: now with even more C++

3. History of the C++ language

4. A “Hello, World!” program

5. C++ compilers

6. Setting up a development environment

7. Basic terms & concepts

Contents

Course outline

 Basic introduction

 History of C & C++

 Compilers

 Development environments

 Basic terms and concepts

 Basic C++ programming

 Primitive data types, strings, vectors, arrays, pointers

 Expressions, statements

 Structures, unions, enumerations

 Functions, classes

Course outline

 How to organize a project

 Tooling

 Namespaces

 Forward declarations

 C++’ Standard Template Library (STL)

 IO, containers, generic algorithms

 Static / dynamic memory

 Smart pointers

 Advanced techniques

 Copy control, standard class members

 Operator overloading

 Object-oriented programming

 Templates and generic programming

Course outline

 Useful libraries

 OpenMP, OpenCV, OpenCL, OpenGL/Vulkan, …

 Qt

 Google test

 Google protobuf

 Abseil

 Boost

 And other useful libraries

 Where to find the desired information you need

 Don’t reinvent the wheel, use libraries

Literature

 [1] A Tour of C++, Stroustrup 2013

 [2] Programming – Principles and Practice using C++, Stroustrup 2015

 [3] The C++ Programming Language (4th Edition), Stroustrup 2013

 [4] C++ reference, http://en.cppreference.com/

 [5] CppCon, https://www.youtube.com/user/cppcon/

 [6] Effective Modern C++, Meyers 2015

 [7] Online tutorial: http://www.cplusplus.com/doc/tutorial/

 Various different input channels are important:

 Lecture

 Exercises

 I’ll try to make links to books and YouTube videos

 Talk to each other and look things up

http://en.cppreference.com/
https://www.youtube.com/user/cppcon/
http://www.cplusplus.com/doc/tutorial/

Exercises

 Weekly exercises

 Theoretical and practical exercises

 Submissions are graded

 You need to achieve 50% during semester

 Final project

 Solve a programming task

 Certificate (+ credit points)

 Pass exercises + project solved

 No final exams

 Plagiarism is prohibited (Plage Source Code Copying Detector https://sourceforge.net/projects/plage/)

 Adhere to the notes on the exercise sheets

 Questions so far?

https://sourceforge.net/projects/plage/

1. Organizational matter

2. Course outline

3. History of C++

4. C++ compilers

5. A “Hello World” program

6. Setting up a development environment

7. Basic terms & concepts

Contents

What is C++?

What is C++?

Stroustrup: The Essence of C++

 Embedded systems

 Low level

 A random collection of features

 Class hierarchies

 Multi-paradigms

 A failed attempt to build Java

 It’s C

 Too complicated

 An object-oriented programming language

 Generic Programming

 Template meta-programming

 Buffer overflows

 Classes

 Too big

 Host for DSLs

 A hybrid language

What is C++?

Advice

 Don’t be afraid

 Learning a new language takes time

 Practice, practice, practice

 Read a lot about it (books and C++ forums / as well as code)

 Do the exercises

 Always ask yourself: why does this work?

 If you are curious about something  use google

 … and share your knowledge and discuss with friends

 Programming will be fun when understood

History of C++

 All started with BCPL

 Basic Combined Programming Language

 Has no data types

 B – a language to implement operating systems

 C – better than B

 Brian Wilson Kernighan

 Dennis MacAlister Ritchie

 C with Classes

 Bjarne Stoustrup

 C++

 Dynamically evolving

 C++14/C++17/C++20

[Figure and images taken from images.google.de/ and A Tour of C++, Stroustrup 2013]

History of C++

 But why are we not learning C++20?

 I cannot teach five courses in one

 Adaption needs time

 Concepts and ideas first

 Compiler implementations follow

 // void …

 Industry usually adapts ~ 5-10 years later

 There are reasons for that

 Concepts have to be proven as useful

 Compilers have to mature over time

[Figure from A Tour of C++, Stroustrup 2013]

History of C++

 BCPL, B, C,

 Why not D after C?

 C was and is still tremendously successful

 Lots of existing code was and is still written in C

 Don’t break compatibility!

 Be an increment rather than a new language

 A language called D exists

 D is no longer compatible with C

 Be aware: Modern C++ is not C

[Figure from A Tour of C++, Stroustrup 2013]

1. Organizational matter

2. Course outline

3. History of C++

4. C++ compilers

5. A “Hello, World!” program

6. Setting up a development environment

7. Basic terms & concepts

Contents

What is a compiler?

Compilers: Principles, Techniques, & Tools, Aho, Lam, Sethi, Ullman 2007

Are there other forms? Interpreter

Compilers: Principles, Techniques, & Tools, Aho, Lam, Sethi, Ullman 2007

Even more: hybrid compilers

Compilers: Principles, Techniques, & Tools, Aho, Lam, Sethi, Ullman 2007

C++ compilers

 Clang

 Compiler front-end for

C-like languages (including

C and C++)

 Used by Google, Apple, Oracle …

 Started as a Ph.D. thesis by Chris

Lattner

 Stable version in 2009

 Part of a reusable compiler

infrastructure (LLVM project)

 Written in C++

 Gnu Compiler Collection GCC

 Includes C and C++ front-ends

 Standard on most Linux dists.

 “Most used C/C++ compiler in the world”

 Fist stable release was v1.17 (1988)

 Monolithic design

 Written by bootstrapping

 Written by something else until its

powerful enough to compile itself

There are a lot more: Intel icc, IBM C++, MSVS C++, Oracle ++, Apple C++, Bloodshed Dev-C++, EDG C++

[Figures from gcc.gnu.org and clang.llvm.org]

GCC and Clang are language processing systems

Compilers: Principles, Techniques, & Tools, Aho, Lam, Sethi, Ullman 2007

 C++ is (usually) a compiled

language

 C++ compilers are language

processing systems /

compiler tool chains

Remark on what follows

 “Keep simple things simple,

as simple as possible, but not simpler!” (Einstein)

 Problem: where to start when learning a programming language?

 It all seems like magic

 In order to be able to start at all we have to …

1. take certain things for granted

2. learn the WHY over time

1. Organizational matter

2. Course outline

3. History of C++

4. C++ compilers

5. A “Hello, World!” program

6. Setting up a development environment

7. Basic terms & concepts

Contents

A “Hello, World!” program

int main() { return 0; }

or int main() {}

#include <iostream>

// This function prints Hello, World!

int main(int argc, char **argv) {

std::cout << "Hello, World!\n";

return 0;

}

 Shortest valid C++ program

 A “Hello, World!” program

 Uses a header file

 A comment

 main() function (with arguments)

 Uses a namespace

 :: scope and << shift operator

 Uses a string literal and a variable (cout)

 return 0; a value that is returned to the OS

 ‘0’ indicates success

 Values other than ‘0’ indicate failure

A “Hello, World!” program

Edit a text file, e.g. ‘hello.cpp’, with the following

contents:

#include <iostream>

int main(int argc, char **argv){

std::cout << "Hello, World!\n";

return 0;

}

 Tell the compiler to translate ‘hello.cpp’ into

executable machine code

 Command:

 cc hello.cpp –o hello

 You can execute the program ‘hello’ with

./hello

 Replace cc with g++ or clang++

A “Hello, World!” program

Edit a text file, e.g. ‘hello.cpp’, with the following

contents:

#include <iostream>

int main(int argc, char **argv){

std::cout << "Hello, World!\n";

return 0;

}

 Some useful compiler flags

 -Wall turns on compiler warning

 -Wextra turns on even more warnings

 -g insert debugging symbols

 -Ox turn on compiler optimization

(x is a number: 0,1,2,3)

 -o specify the output file

 -std=X specify the C++ standard

e.g. -std=c++17 or

-std=c++20

 E.g.

g++ -Wall –Wextra –std=c++17 hello.cpp –o hello

A “Hello, World!” program

#include <iostream>

int main(int argc, char **argv) {

std::cout << "Hello, World!\n";

return 0;

}

 #-directives are instructions for the preprocessor

 Preprocessor runs over the program first

 Then compiler starts its job

 #include directives just perform textual

insertion

 std:: is a namespace

 Namespaces hold code

 Helps to avoid collisions (e.g. variable

names, function names, …)

[Figure from Compilers: Principles, Techniques, & Tools, 2007]

A “Hello, World!” program

#include <iostream>

int main(int argc, char **argv) {

std::cout << "Hello, World!\n";

return 0;

}

 Compiler option –S shows the assembly code

 cc hello.cpp –S –o hello.as

.file "hello.cpp"

.local _ZStL8__ioinit

.comm _ZStL8__ioinit,1,1

.section .rodata

.LC0:

.string "Hello World"

.text

.globl main

.type main, @function

main:

.LFB971:

.cfi_startproc

pushq %rbp

.cfi_def_cfa_offset 16

.cfi_offset 6, -16

movq %rsp, %rbp

.cfi_def_cfa_register 6

subq $16, %rsp

movl %edi, -4(%rbp)

movq %rsi, -16(%rbp)

movl $.LC0, %esi

movl $_ZSt4cout, %edi

call _ZStlsISt11char_traitsIcEERSt13basic_ostreamIcT_ES5_PKc

movl $_ZSt4endlIcSt11char_traitsIcEERSt13basic_ostreamIT_T0_ES6_, %esi

movq %rax, %rdi

call _ZNSolsEPFRSoS_E

movl $0, %eax

…… // code still continues

[Figure from Compilers: Principles, Techniques, & Tools, 2007]

A “Hello, World!” program

#include <iostream>

int main(int argc, char **argv) {

std::cout << "Hello, World!\n";

return 0;

}

 Compile to binary directly

 cc hello.cpp –o hello

 Content of hello looks like that

[Figure from Compilers: Principles, Techniques, & Tools, 2007]

1. Organizational matter

2. Course outline

3. History of C++

4. C++ compilers

5. A “Hello, World!” program

6. Setting up a development environment

7. Basic terms & concepts

Contents

Calling the compiler by hand is wasteful

 Integrated Development Environment (IDE)

 Handles the project and corresponding

source files for you

 Handles compiler invocations

 Easier to use than Makefile, CMake, etc.

 Will find syntax errors on-the-fly

 More complex tasks are painful

 Lack of control

 Hides complexity

 I’m using a combination of both!

 Makefile, CMake, and friends

 Help to organize a software’s source code

 Text files containing rules that describe

how to invoke the compiler

 Rules are read, identified, and executed

on-demand

 Flexible and powerful

 Hard to write for complex tasks

 Start with a template

 You see what’s going on

 Nothing is hidden under the carpet

Makefile, an example  Project directory: MyProject/

 Makefile

PROGNAME := hello

CC := g++

FLAGS := -std=c++17

FLAGS += -Wall

all: main.cpp

$(CC) $(FLAGS) *.cpp -o $(PROGNAME)

clean:

rm -f $(PROGNAME)

 hello.cpp:

#include <iostream>

int main() {

std::cout << "Hello, World!\n";

return 0;

}

 Using the compiler ‘by hand’ is fiddly

 Use files describing the compiler commands

 Makefile

 Contains executable “targets”

 Consist of a bunch of declarative rules

 Processed by make

 Flexible

 Easy to use

 Hard to write

 There are books on make

Integrated Development Environment (IDE) and other editors

 Visual Studio Code

 Compact editor

 Windows / Linux / Mac

 Or use vim, emacs, etc. (hardcore ;-)

 Use whatever feels best to you

 Depending on your programming

level and experience

[Figures taken from eclipse.org and code.visualstudio.com]

Set up a development environment

#include <iostream>

int main() {

cout << "Hello, World!\n";

return 0;

}

 Set up a development environment?

 I will provide a virtual machine

 Password: cppp

 Ubuntu 20.04, ~20 GB (sorry)

 Ships with everything that is needed

 Remark on compiler errors

 Errors are the default case

 Don’t panic and read them

 Read them carefully

 Google will help

 So does stack overflow

(a programming forum)

https://uni-paderborn.sciebo.de/s/VKRtFN88P23PMCs

1. Organizational matter

2. Course outline

3. History of the C++ language

4. C++ compilers

5. A “Hello World” program

6. Setting up a development environment

7. Basic terms & concepts

Contents

Primitive / built-in data types

 Boolean types

 bool

 Can hold true or false

 Character types

 char

 Integer types

 int

 Modifiers and sizes (integer types only)

 signed and unsigned

 short / long / long long

 Floating point types

 float

 double

 long double

[Figure taken from Wikipedia]

Integer encoding

 unsigned char

 1 byte = 8 bit

 Dual number encoding with unsigned

Decimal value: 1 ∙ 27 + 0 ∙ 26 + 1 ∙ 25 + 1 ∙ 24 + 0 ∙ 23 + 0 ∙ 22 + 1 ∙ 21 + 1 ∙ 20

= 128 + 32 + 16 + 2 + 1 = 179

1 0 1 1 0 0 1 1

Integer encoding

 signed char or char

 1 byte = 8 bit

 Two’s complement encoding with signed or as default

 Highest bit encodes sign

 Other bits encode value

 Here: sign bit 1, number is negative: take two’s complement (negate and add 1)

Decimal value: 1 ∙ 26 + 0 ∙ 25 + 0 ∙ 24 + 1 ∙ 23 + 1 ∙ 22 + 0 ∙ 21 + 1 ∙ 20 = 64 + 8 + 4 + 1 = 77 → −77

1 0 1 1 0 0 1 1

Add one

0011001

1011001

-

-

Take complement

Floating point number encoding

 IEEE-754 single-precision binary floating-point format

 IEEE-754 double-precision binary floating-point format

 Remark

 Use double as default, float usually far too imprecise

 Floating point numbers are not distributed equidistant

[Figures from Wikipedia]

Comments in C++

 Comments tell other people what your code does

 Comments tell yourself what your code does

 Or at least what it is supposed to do

 Code can be hard to understand

 Examples

 // a single-line comment

 /*

A multi-line

comment

*/

 /* … */

… *

… */ this is wrong

Integer literals in C++

// int decimal

// int decimal

// long, decimal

// unsigned int, decimal

// unsigned long, decimal

// int, octal

// int, hexadecimal

// unsigned long, hexadecimal

 100

 123456

 5L

 123u

 777uL

 -02O

 0x1fff

 0x1ffful

Character literals in C++

// character A

// symbol *

// end of a string

// new line

// tabulator

// apostrophe

// backslash

// a string literal

 'A'

 '*'

 '\0'

 '\n'

 '\t'

 '\''

 '\\‘

String literals in C++

 "This is a string literal!"

 More on strings later

Floating-point literals in C++

// double

// double

// double

// double

// float

// long double

 -9.876

 123.456E-7

 1e12

 .001

 1.23f

 1.23L

Defining variables in C++

int main() {

// see left side

return 0;

}

 Initialize your variables, unless you know what
you are doing!

 Variables have a

 Type

 Name

 Optional: an initial value

int i = 42;

int j;

int k = 10, l = 42, m;

double d = 1;

double e;

double f = 1.23456;

float g = 12.5f;

float h = 42.13;

char c = 'A';

char c[] = "A string"; // later on

char *c = "Another string"; // later on

char x = -10;

unsigned int ui = 123;

unsigned int huge = -13; // DON'T!!!

Variables in C++

 unsigned int huge = -13; // DON'T!!!

 Dangerous

 Integer overflow

 C++ is famous for its undefined behavior

 C++ standard allows undefined behavior in some situations

int i;

int j = i + 42;

 Anything can happen

 Depends on the compiler’s implementation

 Why?

 Compilers can produce faster machine code when

assuming that certain things cannot happen

[Figure taken from https://www.reddit.com/r/ProgrammerHumor/comments/8p54sk/reporting_errors/]

Variables in C++

#include <vector>

// C++98 style 

std::vector<int> v;

v.push_back(1);

v.push_back(2);

v.push_back(3);

for (std::vector<int>::iterator it =

v.begin(); it != v.end(); ++it) {

std::cout << *it << '\n';

}

// using modern C++

std::vector<int> w = {1, 2, 3};

for (auto i : w) {

std::cout << i << '\n';

}

 auto keyword

 Automatic type deduction

 Compiler finds the correct type

 Always be verbose

 If type name gets ‘too long’ or type

is obvious use auto

 What type is x?

 auto x = 13L; // long

 auto x = 1.2345; // double

Making a point: there are ~50 ways to initialize a simple integer

 int a = 1;

 int b(2);

 int c{3};

 int d = {4};

 auto i = 5;

 auto j(6);

 auto k{7};

 auto l = {8};

IO streams

 Example

#include <iostream>

int main() {

int i = 0;

std::cout<< "Enter an integer: ";

std::cin >> i;

std::cout<< "The value of i is: "

<< i << '\n';

return 0;

}

 #include <iostream>

 Part of the STL

 Content lives in namespace std

 Use std::

 Important variables

 cin standard input stream

 cout standard output stream

 cerr standard error stream

 clog general information

 << and >> are shift operators defined

(i.e., overloaded) on the stream variables

Recap

 Course outline

 What is C++?

 History of C++

 Compilers

 “Hello, World!”

 Built-in types

 Information encoding

 Variables

 IO streams

 Any questions?

And now?

 Quick demo: the development environment and how

to write a “Hello, World!” program

1. Visual Studio Code

2. How to get a C++ job?

Questions?

Thank you for your attention

