
C++ Programming Sheet 7

C++ Programming

Exercise Sheet 7
Secure Software Engineering Group

Philipp Schubert
philipp.schubert@upb.de

June 04, 2021

Solutions to this sheet are due on 11.06.2021 at 16:00. Please hand-in a digital version of your answers
via PANDA at https://panda.uni-paderborn.de/course/view.php?id=22691.
Note: If you copy text or code elements from other sources, clearly mark those elements and state the
source. Copying solutions from other students is prohibited.

This exercise sheet will help to get a deeper understanding on how to use C++ in reality. For that
reason, you will implement your own matrix template class type. You can achieve 16 points in total.

Exercise 1.
Implement a class template matrix that is able to store elements of an arbitrary type T. The core of your
implementation will be matrix operator* (const matrix& lhs, const matrix& rhs)—a matrix multiplication.
The matrix’s entries are stored in a one dimensional vector to increase performance (you will learn why
that is later on in this course). (Hint: For some function implementations you can, of course, make use
of the functionalities of the vector type; you do not have to reinvent the wheel w.r.t. functionalities such
as initialization.)

Consider the following interface:

#include <iostream>
#include <vector>
#include <initializer list>
#include <stdexcept>

template<typename T>
class matrix {
public:
matrix(size t rows, size t columns);
matrix(size t rows, size t columns, const T &ival);
matrix(std::initializer list<std::initializer list<T>> imat);
T& operator() (size t row, size t column);
const T& operator() (size t row, size t column) const;
size t num elements() const noexcept;
size t num rows() const noexcept;
size t num columns() const noexcept;
friend matrix operator∗ (const matrix &lhs, const T &scale);
friend matrix operator∗ (const matrix &lhs, const matrix &rhs);
friend bool operator== (const matrix &lhs, const matrix &rhs);

Page 1

https://panda.uni-paderborn.de/course/view.php?id=22691


C++ Programming Sheet 7

friend bool operator!= (const matrix &lhs, const matrix &rhs);
friend std::ostream& operator<< (std::ostream &os, const matrix &m);

private:
size t rows;
size t columns;
std::vector<T> data;
};

Start off by implementing the first two constructors, as well as the functions num elements(),
num rows() and num cols(). (1 P.)

a)

Next, implement operator<< such that you can print variables of type matrix in a nice format to
the command line. (1 P.)

b)

Now, implement that odd-looking constructor, that constructs a matrix from a nested std::initializer list.
This constructor will be very helpful to construct variables of the matrix type using test data. (3 P.)

c)

The above interface already contains one optimization: All matrix entries are stored in a one
dimensional stdvector, that is, in one continuous block of dynamically allocated memory. We will
learn why this is useful later on. But because the entries are stored in one dimension, one has to
provide a function f that maps two dimensional matrix coordinates to the corresponding memory
position in one dimension with f : N×N→ N. The mapping is defined as f (x,y) 7→ x · c+ y with
x ∈ {0,1, ..,rows−1}, y ∈ {0,1, ..,cols−1} and c the number of columns of the matrix. Overload
operator() (the function call operator) to perform the mapping. Also implement the const version
of that operator in order to be able to access elements from matrix variables that are declared const.
(2 P.)

d)

Justify why you do not have to implement the other special member functions! (1 P.)e)

Continue by implementing operator== and operator!=. Matrices should be considered equal if their
dimensions and all of their entries are equal. (1 P.)

f)

Implement matrix operator* (const matrix& lhs, const double scale) to return a matrix that is scaled
by factor scale (this only works for numeric types, of course, see task j) ). (1 P.)

g)

Page 2



C++ Programming Sheet 7

Now, implement the core of this exercise matrix operator* (const matrix& lhs, const matrix& rhs)
such that it performs a matrix multiplication—on numeric types (again, we leave it to the user of
your matrix type to call both operator* on numeric matrices, see task j) )—returning the resulting
matrix. A matrix multiplication is defined as follows:

A =


a11 a12 . . . a1m

a12 a22 . . . a2m
...

...
. . .

...
an1 an2 . . . anm



B =


b11 b12 . . . b1p

b12 b22 . . . b2p
...

...
. . .

...
bm1 bm2 . . . bmp



A ·B =


(ab)11 (ab)12 . . . (ab)1p

(ab)12 (ab)22 . . . (ab)2p
...

...
. . .

...
(ab)n1 (ab)n2 . . . (ab)np



with (ab)i j = ∑
m
k=1 Aik ·Bk j. In words: the resulting matrix contains scalar products of A’s rows

and B’s columns. An illustration can be found in Figure 1. (3 P.)

h)

Extend your implementation in task h) and check if both matrices have the correct dimensions for
performing a matrix multiplication and if not, throw an adequate exception to inform the user of
that type that the requested operation cannot be performed. (1 P.)

i)

For both operator* (from task g) and task h) ) use type traits to check if the template parameter T
is an arithmetic type such that the operations can be performed without crashing your program.
Notify the user of your matrix type by using an adequate mechanism if T is not an arithmetic data
type. (Hint: Have a look std::is arithmetic defined in the type traits header; also keep in mind that
the early error is the better error.) (1 P.)

j)

After having implemented the interface, do test your implementation by commenting-in the lines
inside main(), compiling and running the ”test code”. Observe that you can measure runtimes of
specific function calls by using the chrono header file as shown in the ”test code”. (1 P.)

k)

This is an optional task: Let’s pick up on task j). You are the one, you are one with the compiler
and the machine: Instead of handling non-arithmetic types by issuing an error, for instance, if a
user tries to multiply two matrices that store elements of type std::string, you completely disable
both of the operator* for non-arithmetic type parameters by employing std::enable if. Do so. (0 P.)

l)

Page 3



C++ Programming Sheet 7

Figure 1: An illustration of a matrix multiplication.
Figure taken from wikipedia: https://en.wikipedia.org/wiki/Matrix multiplication#/media/File:Matrix multiplication diagram 2.svg

Exercise 2.
Additional materials:

• Although C++ is the greatest language whatsoever, you always have to be critical with your soft-
ware development tools. A really funny ”WAT” talk summarizing some of the strangest properties
of C++ (∼15 min) can be found here: https://youtu.be/rNNnPrMHsAA

• You may wish to deepen your current knowledge on C++ with help of the following talk: https:
//youtu.be/86xWVb4XIyE . Do not worry, we have not yet covered all of the topics of this talk.

Page 4

https://youtu.be/rNNnPrMHsAA
https://youtu.be/86xWVb4XIyE
https://youtu.be/86xWVb4XIyE

