
C++ Programming Sheet 5

C++ Programming

Exercise Sheet 5
Secure Software Engineering Group

Philipp Schubert
philipp.schubert@upb.de

May 21, 2021

Solutions to this sheet are due on 28.05.2021 at 16:00. Please hand-in a digital version of your answers
via PANDA at https://panda.uni-paderborn.de/course/view.php?id=22691.
Note: If you copy text or code elements from other sources, clearly mark those elements and state the
source. Copying solutions from other students is prohibited.

In the first exercise, you will deepen your knowledge on exceptions and operator overloading. The sec-
ond exercise is a typical coding interview question (like many of the exercises of this course). Use and ex-
tend the code snippets provided at https://www.hni.uni-paderborn.de/fileadmin/Fachgruppen/
Softwaretechnik/Lehre/CPP_Programming/SS2021/code_05.zip. You can achieve 16 points in to-
tal.

Exercise 1.
Because of the finite representation of integer values in memory, an integer type can only hold a limited
range of integer values. If the range of the given type is exceeded an integer over- or underflow is caused.
Signed integer over- or underflows lead to undefined behavior. Therefore, such over- or underflows often
lead to dangerous bugs. An integer overflow for an addition of two int variables can be detected using
the following code:

#include <iostream>
#include <limits>

int main() {
int a = 100;
int b = 200;
// checking over− / underflow for addition
if ((b > 0) && (a > std::numeric limits<int>::max() − b)) {

std::cout << ”addition of a and b would overflow\n”;
} else if ((b < 0) && (a < std::numeric limits<int>::min() − b)) {

std::cout << ”addition of a and b would underflow\n”;
} else {

std::cout << ”everything is fine\n”;
}
return 0;
}

Page 1

https://panda.uni-paderborn.de/course/view.php?id=22691
https://www.hni.uni-paderborn.de/fileadmin/Fachgruppen/Softwaretechnik/Lehre/CPP_Programming/SS2021/code_05.zip
https://www.hni.uni-paderborn.de/fileadmin/Fachgruppen/Softwaretechnik/Lehre/CPP_Programming/SS2021/code_05.zip


C++ Programming Sheet 5

Rather than using hand-crafted checks, you should use the respective compiler built-ins. Depending
on the C++ compiler you are using, please check out:

• http://clang.llvm.org/docs/LanguageExtensions.html#checked-arithmetic-builtins

• https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html

Imagine you have to implement some critical software. You cannot risk that computations using signed
integer arithmetic produce wrong results due to over- or underflows, or division by zero. For that reason
you need to write a wrapper type for the built-in int data type by performing the following tasks. Use the
code provided on the lecture’s website and extend it as necessary.

Check out how to detect an integer over- and underflow for +, -, *, / using the compiler built-ins.
(0 P.)

a)

Define your own signed integer type called sint (safe int) that is robust against over- and underflows
using the keyword class. Provide implementations for the following (special) member functions:
(Hint: Think about what special member functions can be set to default.)

• sint(); // default ctor, that initializes with 0

• sint(int i); // ctor that initializes with value of i

• ∼sint(); // dtor

• sint(const sint& s); // copy

• sint& operator=(const sint& s); // copy assign

• sint(sint&& s); // move

• sint& operator=(sint&& s); // move assign

• int getUnderlyingValue() const;

(2 P.)

b)

Overload the following operators such that the sint type can be used like a built-in integer type. All
of the arithmetic operators (+, ++, -, –, *, /) must check if an integer over- or underflow, or a division
by zero occurs during a calculation and throw a suitable exception (overflow error, underflow error,
logic error) to alert the user of the sint type. Test your code using the commented code in main
(’de-comment’ as necessary and catch exceptions as they occur).

• friend sint operator+ (sint lhs, sint rhs);

• friend sint operator- (sint lhs, sint rhs);

• friend sint operator* (sint lhs, sint rhs);

• friend sint operator/ (sint lhs, sint rhs);

• sint &operator++(); // prefix ++: no parameter, returns a reference

• sint operator++(int); // postfix ++: dummy parameter, returns a value

• sint &operator–(); // prefix ++: no parameter, returns a reference

• sint operator–(int); // postfix ++: dummy parameter, returns a value

• friend ostream& operator<< (ostream& os, const sint& s);

(5 P.)

c)

Page 2

http://clang.llvm.org/docs/LanguageExtensions.html#checked-arithmetic-builtins
https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html


C++ Programming Sheet 5

What is the size (in bytes) of a variable of type sint on your machine? In general, what is the size
of a user-defined type? How and where does the compiler store member functions? (3 P.)

d)

Exercise 2.
With your current knowledge on pointers you are now able to implement your own advanced data struc-
tures such as lists. In this exercise, you need to implement a rudimentary version of a singly linked
list.

Consider the following code:

#include <iostream>

struct Node {
int data;
Node ∗next;
Node(int i) : data(i), next(nullptr) {}
friend std::ostream &operator<<(std::ostream &os, const Node &n) {

os << ”Node\n”
<< ”\tdata: ” << n.data << ”\n\tthis: ” << &n
<< ”\n\tnext: ” << n.next;

return os;
}
};
void addElement(Node ∗∗head, int data);
void printList(const Node ∗head);
void deleteList(Node ∗head);

int main() {
Node ∗list = nullptr;
addElement(&list, 1);
addElement(&list, 2);
addElement(&list, 3);
addElement(&list, 4);
printList(list);
deleteList(list);
return 0;
}

Provide the missing implementations for addElement, printList and deleteList! (6 P.)

• addElement must allocate and initialize a new node and add it to the end of the list pointed to by
head. The end of the list is denoted with the nullptr.

• printList must iterate the list pointed to by head and print each node of the list. Use the operator<<

that has already been overloaded to print a list node of type Node.

• deleteList must be implemented to deallocate all dynamically allocated nodes maintained in the
list.

(Hint: Since you are dealing with pointers it might be helpful to draw the structure of the list on
a piece of paper and think about what each function has to do. Use while loops to iterate a list;
check for the nullptr to determine the end of a list. You may wish to also consult the following video:
https://www.youtube.com/watch?v=t5NszbIerYc.)

Page 3

https://www.youtube.com/watch?v=t5NszbIerYc


C++ Programming Sheet 5

You can check your code for memory issues by compiling the code using the -g flag and using
valgrind, e.g.:
$ clang++ -std=c++17 -Wall -Wextra -g list.cpp -o list
$ valgrind --leak-check=full --track-origins=yes ./list

The valgrind tool can be installed using $ sudo apt install valgrind

Alternatively, you can also use Clang’s address and undefined behavior sanitizer to ensure that your
program does not contain memory issues, e.g.:
$ clang++ -std=c++17 -Wall -Wextra -g -fsanitize=address,undefined
-fno-omit-frame-pointer list.cpp -o list
$ ./list

Page 4


