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This exercise sheet will help you to familiarize yourself with dynamic memory allocation and operator
overloading. Additionally, you will implement a small useful algorithm. You can achieve 16 points in
total.

Exercise 1.
In this exercise, you will create a simple model of a mathematical vector v∈Rn to make yourself familiar
with dynamic memory allocation and operator overloading. This time you will not use std::vector to store
the elements, but rather create your own vector-like data type that uses dynamic memory allocation to
store its elements. The STL data type std::vector that you already used is implemented in a very similar
manner to what you will implement in this exercise. Consider the code provided on the website,
all (special member) function signatures are annotated with comments that describe what each
function must do. Provide implementations for all functions and test your implementations by un-
commenting the test code provided in the main function. (Hint: have a look on how we implemented the
special member functions in the lecture.)

Provide implementations for the following useful constructors:

• vec(size t size);

• vec(size t size, double ival);

• vec(initializer list<double> ilist); (look up std::initializer list at en.cppreference.com)

(3 P.)

a)
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Furthermore, provide implementations for the following other special member functions.

• ∼vec();

• vec(const vec &m);

• vec& operator= (const vec &m);

• vec(vec &&m);

• vec& operator= (vec &&m);

(4 P.)

b)

Also provide implementations for the following useful function members and operators.

• size t size();

• double& operator[] (size t idx);

• const double& operator[] (size t idx) const;

• friend ostream& operator<< (ostream &os, const vec &v);

• friend vec operator+ (vec lhs, const vec &rhs);

• friend vec operator- (vec lhs, const vec &rhs);

• friend vec operator* (vec lhs, double scale);

• friend double operator* (const vec &lhs, const vec &rhs);

(4 P.)

c)

Exercise 2.
This exercise is about sorting. Bubble sort is a sorting algorithm that allows you to sort the elements
of a std::vector, for instance. Here is how bubble sort works: it iterates a std::vector-typed variable v
and looks at two adjacent elements v[i] and v[i+1]. Then, bubble sort compares these two elements and
swaps their position if the value v[i+ 1] is smaller than v[i]. It then increments i and performs the next
”bubble” comparison until it has iterated the complete std::vector. One iteration might not be sufficient
to sort all entries of v. Therefore, bubble sort performs as many iterations as necessary until nothing has
to be swapped anymore; the std::vector variable is then sorted.

Implement a function void bubble sort(vector<int> &v) that sorts a vector of integers specified by
the reference parameter according to the bubble sort algorithm. Your implementation has to sort
all entries in v in ascending order (small numbers first, as described in the above). Test your bubble
sort implementation for the following std::vector variable:

std::vector<int> v = {1, 5, 6, 23 ,7, 8, 9, 21, 12, 4};
(3 P.)

a)

Modify your bubble sort implementation to match the signature void bubble sort(vector<int> &v,
size t from, size t to) and change its behavior such that it only sorts the entries that are contained
in the interval specified by from and to. For example, the following call bubble sort(v, 0, 5); would
change v’s contents to 1, 5, 6, 7, 8, 23, 9, 21, 12, 4. (2 P.)

b)
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