

MASCHINELLES LERNEN: ÜBER DATEN, WISSEN UND ECORITHMEN

Eyke Hüllermeier

Department of Computer Science Paderborn University

eyke@upb.de

HNI-Forum, Paderborn, 18-MAI-2017

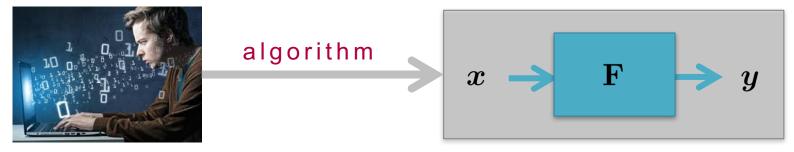
"Machine learning is the science and art of algorithms that make sense of data."

Peter Flach, 2012

"Machine learning is the science of getting computers to act without being explicitly programmed."

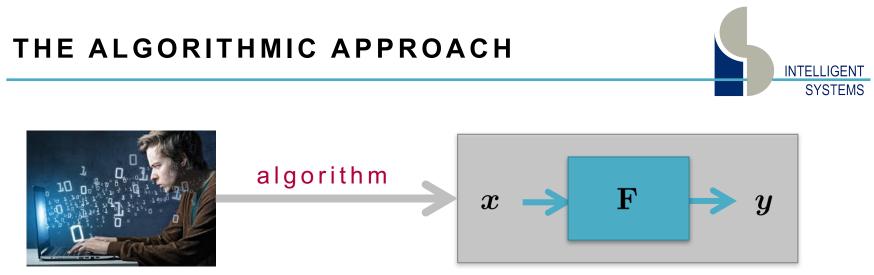
Andrew Ng, 2013

THE ALGORITHMIC APPROACH



domain expert = programmer

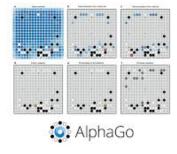
```
ALGORITHM shortest-path(V,T)
W := \{v1\}
ShortDist[v1] :=0
FOR each u in V - \{v1\}
     ShortDist[u] := T[v1, u]
WHILE W /= V
       MinDist := INFINITE
       FOR each v in V - W
           IF ShortDist[v] < MinDist</pre>
              MinDist = ShortDist[v]
              w := v
           END {if}
       END {for}
       W := W U \{w\}
       FOR each u in V - W
           ShortDist[u] := Min(ShorDis[u], ShortDist[w] + T[w,u])
END {while}
```



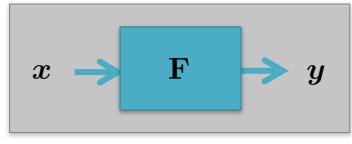
domain expert = programmer

Requires a **comprehensive understanding** and adequate formalization, not only of the problem, but also **of the solution process**.

GAME PLAYING



state vector describing the environment



ROBOT SOCCER

action vector

technology and science news

19 September 2013

INTELLIGENT SYSTEMS

The End of Driving?

A chorus of carmakers has declared that they expect autonomous cars to reach commercial viability by 2020. Computer systems and sensors that handle parking, braking, and to a limited degree, steering are already giving us a glimpse of a future in which machines not only drive unassisted but do so better than any human can. Now Tesla Motors, maker of the eponymous electric luxury sports car that debuted to rave reviews, has upped the ante. Tesla's CEO, Elon Musk, says that within the next three years, his company aims to produce systems capable of safely taking the helm for 90 percent of miles driven.

IMAGE RECOGNITION

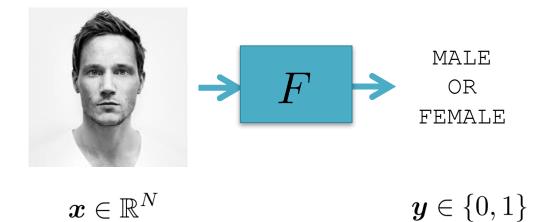
AUTONOMOUS CARS

"Our problem then is to find out how to programme these machines to [behave intelligently]. At my present rate of working I produce about a thousand digits of programme a day, so that about sixty workers, working steadily through the fifty years might accomplish the job, if nothing went into the waste-paper basket. **Some more expeditious** method seems desirable."

Alan Turing, Computing Machinery and Intelligence, 1950

Goal of **automated programming** ever since (e.g. Turing Award Lecture by Jim Gray, 1999)

Human skills are not always easy to explain!



IMPLICIT SKILLS

Human skills are not always easy to explain!

Optimal Sample Complexity of M-wise Data for Top-K Ranking

(16)

Algorithm 1 Rank Centrality (Negahban et al., 2012) Input the collection of statistics $s = \{s_{\mathcal{I}} : \mathcal{I} \in \mathcal{E}^{(M)}\}$. Convert the *M*-wise sample for each hyper-edge \mathcal{I} into *M* pairwise samples:

1. Choose a circular permutation of the items in $\ensuremath{\mathcal{I}}$ uniformly at random,

Break it into the M pairs of adjacent items, and denote the set of pairs by φ(I),

Use the (pairwise) data of the pairs in φ(I).

Compute the transition matrix $\hat{P} = [\hat{P}_{ij}]_{1 \le i,j \le n}$:

$$\hat{P}_{ij} = \begin{cases} \frac{1}{2d} y_{ij} & \text{if } i \neq j;\\ 1 - \sum_{k:k \neq j} \hat{P}_{kj} & \text{if } i = j;\\ 0 & \text{otherwise}, \end{cases}$$

where d_{max} is the maximum out-degree of vertices in \mathcal{E} . Output the stationary distribution of matrix \hat{P} .

$$y_{ij} := \sum_{I:\{i,j\}\in\phi(I)} \frac{1}{L} \sum_{\ell=1}^{L} y_{ij,I}^{(\ell)}.$$

In an ideal scenario where we obtain an infinite number of samples per M-wise comparison, i.e., $L \rightarrow \infty$, sufficient statistics $\frac{1}{2}\sum_{i=1}^{L} \frac{M_{i}^{2}}{V_{i}}$ coverege to $\frac{M_{i}}{M_{i}}$ as the PL model is a natural generalized version of the BTL model. Then, the constructed matrix P defined in Algorithm 1 becomes matrix P whose entries $[P_{i}]_{i \in [1, N]}$ and entine d as

$$P_{ij} = \begin{cases} \frac{1}{2d_{max}} \sum_{\mathcal{I}: \{i,j\} \in \phi(\mathcal{I})} \frac{w_i}{w_i + w_j} & \text{for } \mathcal{I} \in \mathcal{E}^{(M)}; \\ 1 - \sum_{k:k \neq j} P_{kj} & \text{if } i = j; \\ 0 & \text{otherwise.} \end{cases}$$
(17)

The entries for observed item pairs represent the relative likelihood of item *i* being preferred over item *j*. Intuitively, random walks of P in the long run visit some states more often, if they have been preferred over other frequentlyvisited states and/or preferred over many other states.

The random walks are reversible as $w_i P_{ji} = w_j P_{ij}$ holds, and irreducible under the connectivity assumption. Once we obtain the unique stationary distribution, it is equal to $w = \{w_1, \ldots, w_n\}$ up to some constant scaling.

It is clear that random walks of \hat{P} , a noisy version of P, will give us an approximation of w. The algorithm

et al., 2013) directly follows the ordering evaluated in each sample; if it is $1 \prec 2 \prec \cdots \prec M - 1 \prec M$, it is broken into pairs or adjacent letens: $1 \prec 2$ up to $M - 1 \prec M$. Our method turns out to be consistent, i.e., $\frac{1}{P(p_1+\sigma)} = \frac{w_1}{w_1}$ (see (17)), whereas the adjacent breaking method is not (A zari S outfain et al., 2013).

adopts a power method, known to be computationally efficient in obtaining the leading eigenvalue of a sparse matrix (Meirovitch, 1997), to obtain the stationary distribution.

3.2. Proof outline

To outline the proof of Theorem 2, let us introduce Theorem 3. We show that Theorem 3 leads to Theorem 2. **Theorem 3.** When Rank Centrality is employed, with high probability, the ℓ_{∞} norm estimation error is upper-bounded by

 $\frac{\|\hat{\boldsymbol{w}} - \boldsymbol{w}\|_{\infty}}{\|\boldsymbol{w}\|_{\infty}} \lesssim \sqrt{\frac{n \log n}{\binom{n}{M} pL}} \sqrt{\frac{1}{M}},$ (18)

where $p \ge c_1(M-1)\sqrt{\frac{\log n}{\binom{R-1}{M-1}}}$, and c_1 is some numerical constant

Let $\|w\|_{\infty} = w_{\max} = 1$ for ease of demonstration. Suppose $\Delta_K = w_K - w_{K+1} \gtrsim \sqrt{\frac{\log n}{\binom{K}{M}pL}} \sqrt{\frac{1}{M}}$. Then,

$$\hat{w}_i - \hat{w}_j \ge w_i - w_j - |\hat{w}_i - w_i| - |\hat{w}_j - w_j|$$

 $\ge w_K - w_{K+1} - 2||\hat{w} - w||_{\infty} > 0,$ (19)

for all $1 \leq i \leq K$ and $j \geq K+1$. That is, the top-K items are identified as desired. Hence, as long as $\Delta_K \gtrsim \sqrt{\frac{\log n}{(\frac{K}{M})pL}\sqrt{\frac{M}{M}}}$, i.e., $\binom{n}{M}pL \gtrsim \frac{\log n}{\Delta_K^K}\frac{1}{M}$, reliable top-K

ranking is achieved with the sample size of $\frac{n \log n}{\Delta_K^2} \frac{1}{M}$. Now, let us prove Theorem 3. To find an ℓ_{∞} error bound

Now, let us prove incore it is in the at $t_{\infty} = 0$ for bound, we first derive an upper bound on the point-wise error between the score estimate of item *i* and its true score, which consists of three terms: $|\hat{w}_{i} = w_{i}| \leq |\hat{w}_{i} = w_{i}|\hat{D}_{i} + \sum_{i} |\hat{w}_{i} = w_{i}|\hat{D}_{i}$

$$|\tilde{w}_{i} - w_{i}| \leq |\tilde{w}_{i} - w_{i}| P_{ii} + \sum_{j:j\neq i} |\tilde{w}_{j} - w_{j}| P_{ij}$$

 $+ \left| \sum_{i:j\neq i} (w_{i} + w_{j}) (\tilde{P}_{ji} - P_{ji}) \right|.$ (20)

This can be obtained applying $\hat{w} = \hat{P}\hat{w}$ and w = Pw. We obtain upper bounds on these three terms as follows.

$$\begin{split} & \left| \sum_{j:j \neq i} (w_i + w_j) \left(\hat{P}_{ji} - P_{ji} \right) \right| \lesssim \sqrt{\frac{n \log n}{(\tilde{w}_j) p L}} \sqrt{\frac{1}{M}}, \quad (21) \\ & \sum_{i:i \neq i} |\hat{w}_j - w_j| \hat{P}_{ij} \lesssim \sqrt{\frac{n \log n}{(\tilde{w}_j) p L}} \sqrt{\frac{1}{M}}, \quad (23) \end{split}$$

with high probability (see Lemmas 1, 2 and 3 in the supplementary for details). One can see that the inequalities (21)

Abstract

Given a sample of instances with binary labels, the top ranking problem is to produce a ranked list of instances where the *head* of the list is dominated by positives. Popular existing approaches to this problem are based on surrogates to a performance measure known as the fraction of positives of the top (PTop). In this paper, we show that the measure and its surrogates have an undesirable property: for certain noisy distributions, it is optimal to trivially predict *the same score for all instances.* We propose a simple rectification of the measure which avoids such trivial solutions, while still focussing on the head of the ranked list and being as easy to optimise.

Human skills are not always easy to explain!

Abstract

Given a sample of instances with binary labels, the top ranking problem is to produce a ranked list of instances where the head of the list is dominated by positives. Popular existing approaches to this problem are based on surrogates to a performance measure known as the fraction of positives of the top (PTop). In this paper, we show that the measure and its surrogates have an undesirable property: for certain noisy distributions, it is optimal to trivially predict the same score for all instances. We propose a simple rectification of the measure which avoids such trivial solutions, while still focussing on the head of the ranked list and being as easy to optimise.

Optimal Sample Complexity of M-wise Data for Top-K Ranking

(16)

(17)

Algorithm 1 Rank Centrality (Negahban et al., 2012) Input the collection of statistics $s = \{s_{\mathcal{I}} : \mathcal{I} \in \mathcal{E}^{(M)}\}$ Convert the *M*-wise sample for each hyper-edge \mathcal{I} into M pairwise samples:

- 1. Choose a circular permutation of the items in $\mathcal I$ uniformly at random,
- 2. Break it into the M pairs of adjacent items, and denote the set of pairs by $\phi(I)$,

3. Use the (pairwise) data of the pairs in $\phi(\mathcal{I})$.

Compute the transition matrix
$$\hat{P} = [\hat{P}_{ij}]_{1 \le i,j \le n}$$
:

$$\hat{P}_{ij} = \begin{cases} \frac{2d_{\max}}{2d_{\max}}y_{ij} & \text{if } i \neq j;\\ 1 - \sum_{k:k \neq j}\hat{P}_{kj} & \text{if } i = j;\\ 0 & \text{otherwise}, \end{cases}$$

where d_{max} is the maximum out-degree of vertices in \mathcal{E} . Output the stationary distribution of matrix \hat{P} .

$$y_{ij} := \sum_{I:\{i,j\}\in\phi(I)} \frac{1}{L} \sum_{\ell=1}^{L} y_{ij,I}^{(\ell)}$$
.

In an ideal scenario where we obtain an infinite number of samples per M-wise comparison, i.e., $L \rightarrow \infty$, sufficient statistics $\frac{1}{L} \sum_{l=1}^{L} y_{ij,L}^{(\ell)}$ converge to $\frac{w_i}{w_i+w_j}$, as the PL model is a natural generalized version of the BTL model. Then, the constructed matrix \hat{P} defined in Algorithm 1 becomes a matrix P whose entries $[P_{ij}]_{1 \le i,j \le n}$ are defined as

$$P_{ij} = \begin{cases} \frac{1}{2d_{\max}} \sum_{\mathcal{I}: \{i,j\} \in \phi(\mathcal{I})} \frac{w_i}{w_i + w_j} & \text{for } \mathcal{I} \in \mathcal{E}^{(M)}; \\ 1 - \sum_{k:k \neq j} P_{kj} & \text{if } i = j; \\ 0 & \text{otherwise.} \end{cases}$$

The entries for observed item pairs represent the relative likelihood of item i being preferred over item j. Intuitively, random walks of P in the long run visit some states more often, if they have been preferred over other frequentlyvisited states and/or preferred over many other states.

The random walks are reversible as $w_i P_{ii} = w_i P_{ij}$ holds, and irreducible under the connectivity assumption. Once we obtain the unique stationary distribution, it is equal to $w = \{w_1, \dots, w_n\}$ up to some constant scaling.

It is clear that random walks of \hat{P} , a noisy version of P, will give us an approximation of w. The algorithm et al., 2013) directly follows the ordering evaluated in each sam-

ple; if it is $1 \prec 2 \prec \cdots \prec M - 1 \prec M$, it is broken into pairs of adjacent items: $1 \prec 2$ up to $M - 1 \prec M$. Our method turns out to be consistent, i.e., $\frac{\Pr[w_1 = 1]}{\Pr[y_1 = 0]} = \frac{w_1}{w_2}$ (see (17)), whereas the adjacent breaking method is not (Azari Soufiani et al., 2013).

adopts a power method, known to be computationally efficient in obtaining the leading eigenvalue of a sparse matrix (Meirovitch, 1997), to obtain the stationary distribution,

3.2. Proof outline

To outline the proof of Theorem 2, let us introduce Theorem 3. We show that Theorem 3 leads to Theorem 2. Theorem 3. When Rank Centrality is employed, with high probability, the ℓ_{∞} norm estimation error is upperbounded by

$$\frac{\|\hat{\boldsymbol{w}} - \boldsymbol{w}\|_{\infty}}{\|\boldsymbol{w}\|_{\infty}} \lesssim \sqrt{\frac{n \log n}{\binom{n}{M}pL}} \sqrt{\frac{1}{M}},$$
 (18)

where $p \ge c_1(M-1)\sqrt{\frac{\log n}{\binom{N-1}{N-1}}}$, and c_1 is some numerical constan

Let $\| \boldsymbol{w} \|_{\infty} = w_{\max} = 1$ for ease of demonstration. Suppose $\Delta_K = w_K - w_{K+1} \gtrsim \sqrt{\frac{\log n}{\binom{n}{M}p_L}} \sqrt{\frac{1}{M}}$. Then,

$$\hat{w}_i - \hat{w}_j \ge w_i - w_j - |\hat{w}_i - w_i| - |\hat{w}_j - w_j|$$

 $\ge w_K - w_{K+1} - 2||\hat{w} - w||_{\infty} > 0,$ (19)

for all $1 \le i \le K$ and $j \ge K + 1$. That is, the top-K items are identified as desired. Hence, as long as $\Delta_K^*\gtrsim$ $\sqrt{\frac{\log n}{\binom{n}{2}pL}}\sqrt{\frac{1}{M}}$, i.e., $\binom{n}{M}pL \gtrsim \frac{n\log n}{\Delta_k^2}\frac{1}{M}$, reliable top-K ranking is achieved with the sample size of $\frac{n \log n}{\Delta_k^2} \frac{1}{M}$.

Now, let us prove Theorem 3. To find an ℓ_{∞} error bound, we first derive an upper bound on the point-wise error between the score estimate of item i and its true score, which consists of three terms:

$$|\hat{w}_i - w_i| \le |\hat{w}_i - w_i| \hat{P}_{ii} + \sum_{j:j \neq i} |\hat{w}_j - w_j| \hat{P}_{ij}$$

 $+ \left| \sum_{j:j \neq i} (w_i + w_j) (\hat{P}_{ji} - P_{ji}) \right|.$ (20)

This can be obtained applying $\hat{w} = \hat{P}\hat{w}$ and w = Pw. We obtain upper bounds on these three terms as follows.

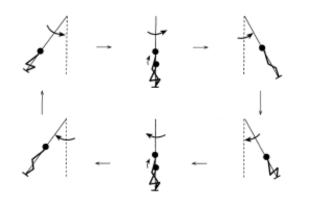
$$\begin{split} \hat{P}_{ii} < 1, \quad (21) \\ \left| \sum_{j:j\neq i} (w_i + w_j) \left(\hat{P}_{ji} - P_{ji} \right) \right| \lesssim \sqrt{\frac{n \log n}{(\frac{n}{M})pL}} \sqrt{\frac{1}{M}}, \quad (22) \\ \sum_{j:j\neq i} |\hat{w}_j - w_j| \hat{P}_{ij} \lesssim \sqrt{\frac{n \log n}{(\frac{1}{M})pL}} \sqrt{\frac{1}{M}}, \quad (23) \end{split}$$

with high probability (see Lemmas 1, 2 and 3 in the supplementary for details). One can see that the inequalities (21)

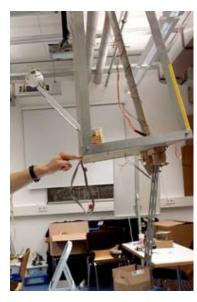
Human skills are not always easy to explain!

For example, a reduction of the search space does not immediately imply better solutions.

Eine Beschränkung des Suchraums führt beispielsweise nicht unmittelbar zu besseren Lösungen.



How to design a swinging robot?



Instead of providing a complete and consistent description of domain knowledge, or designing a model by hand, it is easier to ...

 give examples and let the system generalize

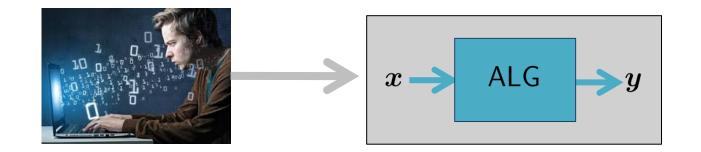
 \rightarrow supervised learning

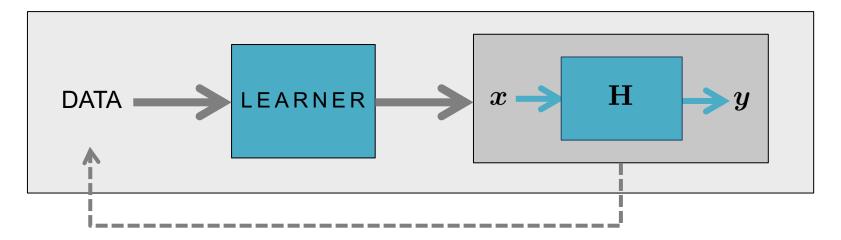
 let the system explore and provide feedback

 demonstrate and let the system imitate

\rightarrow imitation learning

LEARNING FROM DATA





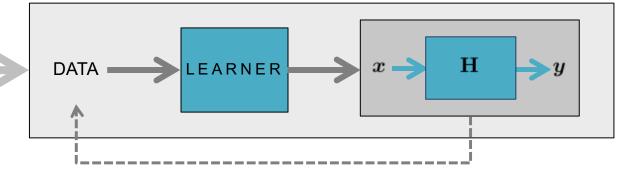
LEARNING FROM DATA

- correctness
- complexity (time, space)

computer scientist

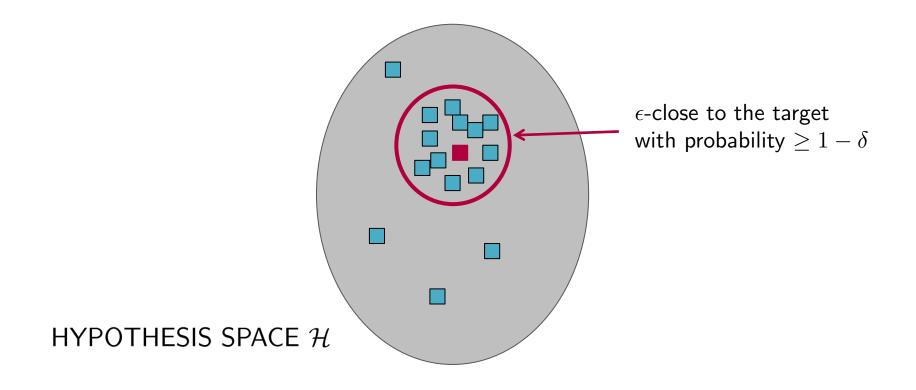
- $x \rightarrow ALG \rightarrow y$
 - correctness (?)
 - complexity (time, space)
 - *sample complexity*

data scientist



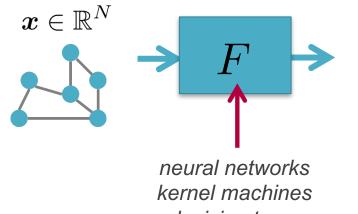
Probably Approximately Correct (PAC) learning:

Efficiently finding a hypothesis that is "good" with high probability!



ACM Turing Award 2010 for Leslie G. Valiant

Machine learning is an option whenever explicitly designing an algorithm by hand appears intricate, while **data** is available that provides, in one way or the other, **useful hints** at what the sought **functionality** may look like.



 $y \in \{0, 1\}$

For example, a reduction of the search space does not immediately imply better solutions.

decision trees

. . .

LEARNING FROM DATA

APPLICATIONS OF MACHINE LEARNING

business (CRM, response prediction, ...)

smart environments

Internet (information retrieval, email classification, personalization, ...)

banking and finance (stock prediction, fraud detection, ...)

INTELLIGENT SYSTEMS

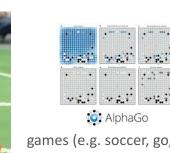
technical systems (diagnosis, control, monitoring, ...)

biometrics (person identification, ...)

media (speech/image recognition, video mining, ...)

medicine (diagnosis, prosthetics, ...)

bioinformatics, genomic data analysis



19 September 2013

The End of Driving? A chorus of carmakers has declared that they expect autor mmercial viability by 2020. Computer systems and sensors that handle parking, braking, and to a limited degree, steering are already giving us a glimpse of a future in which machines not only drive unassisted but do so bette han any human can. Now Tesla Motors, maker of the eponymous electric luxury sports car that debuted to rave reviews, has upped the ante. Tesla's CEO, Elon Musk, says that within the next three years, his company aims to produce systems capable of safely taking the helm for 90 percent of miles

autonmous driving

games (e.g. soccer, go, ...)

ANALYTIC VERSUS SYNTHETIC ML

ANALYTIC VIEW

SYNTHETIC VIEW

Polizei-Software zur Vorhersage von Verbrechen Gesucht: Einbrecher der Zukunft

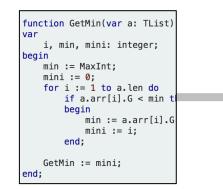
__nazon files patent for "anticipatory" shipping

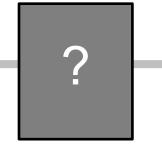
customers buy to decrease shipping time. Amazon says the highping system works by analyzing customer data like, purchasing history, product searches, wish lists and shopping cust contents, the Wall Street Amazon's fuffilment center to a shipping hab close to the customer in anticipation of an eventual nurvehase.

→ analyze and help understand a phenomenon that exists in the real world

→ support the design/engineering of a system with certain desirable properties

ALGORITHMS AND ECORITHMS

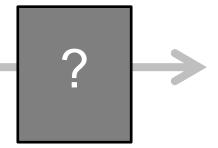




classical programming

models = [] models.append(('LR', Logis models.append(('LDA', Line models.append(('KNN', KNei models.append(('CART', Dec models.append(('NB', Gauss models.append(('SVM', SVC(# evaluate each model in results = [] names = []for name, model in models: kfold = model_selectic cv_results = model_sel results.append(cv_resu names.append(name) msg = "%s: %f (%f)" % print(msg)

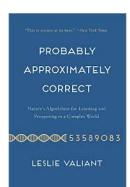
Spot Check Algorithms



INTELLIGENT SYSTEMS

"implicit" programming

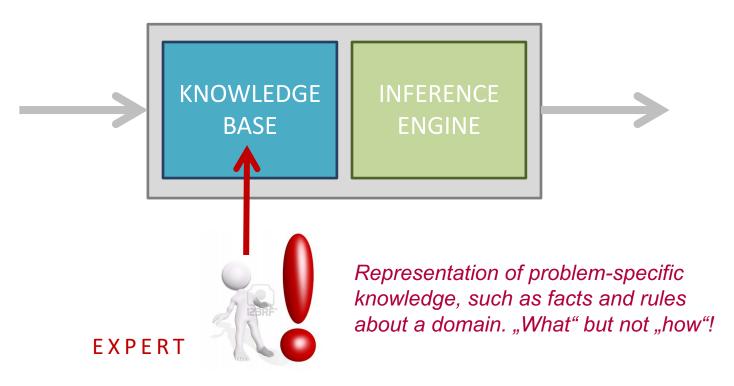
algorithm



ecorithm

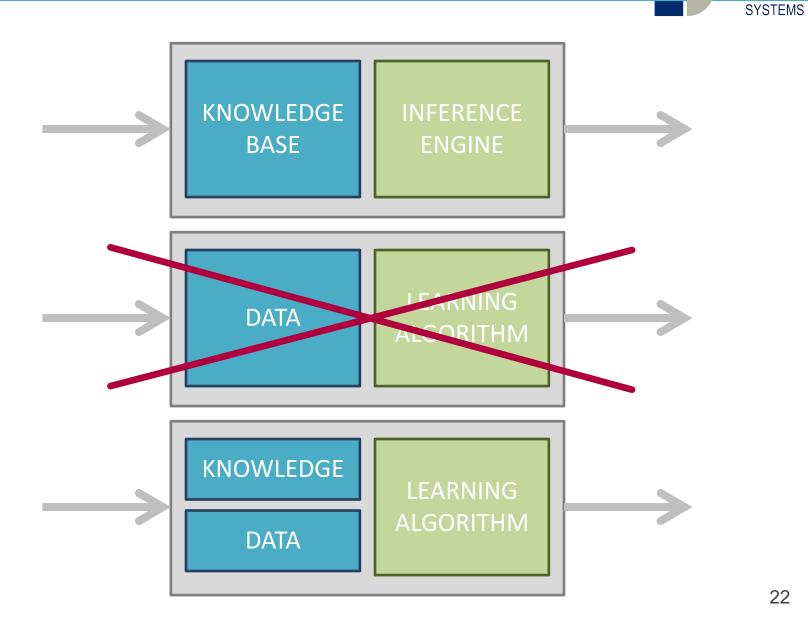
Leslie Valiant's broad term for an algorithm occurring in nature. An ecorithm is an algorithm "living" in and interacting with an external environment. Its goal is to perform well in that environment. Parallel to evolution of ecosystems.

KNOWLEDGE-BASED PROGRAMMING

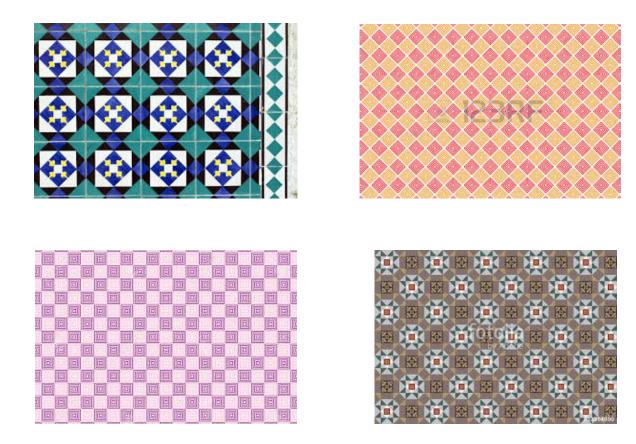


- Generic control structure implemented by the inference engine.
- programs = theories of a formal logic, computations = deductions
- Closely connected to declarative programming languages such as PROLOG.
- Appealing if it's difficult to explain HOW the problem is solved.

KNOWLEDGE-BASED PROGRAMMING

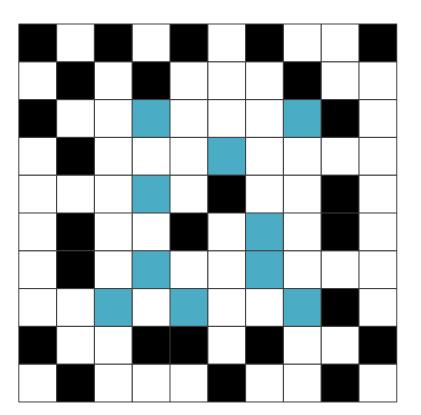


INTELLIGENT



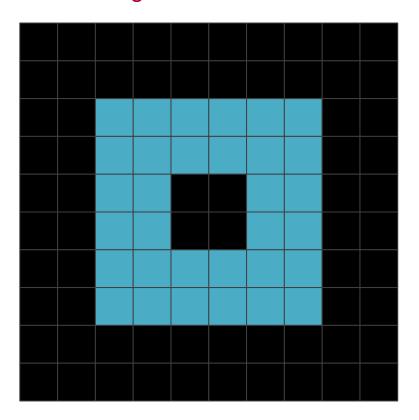
The world is regular ...

KNOWLEDGE AND DATA



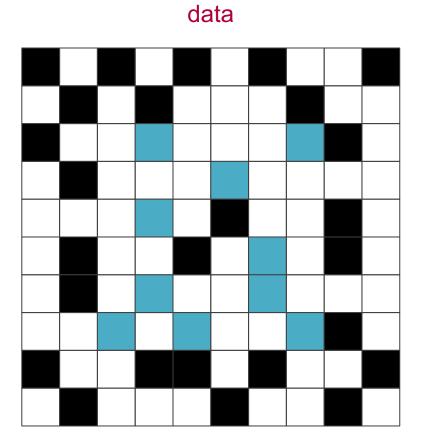
data

generalization

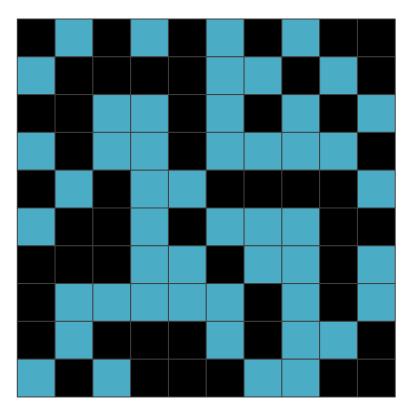


The world is regular ...

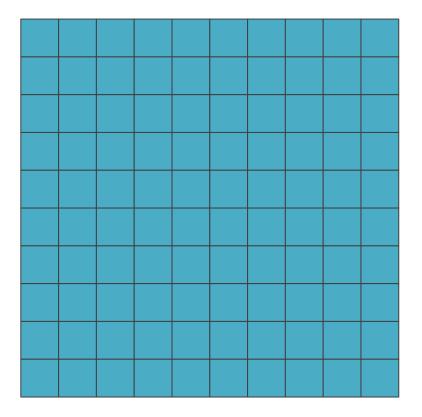
KNOWLEDGE AND DATA

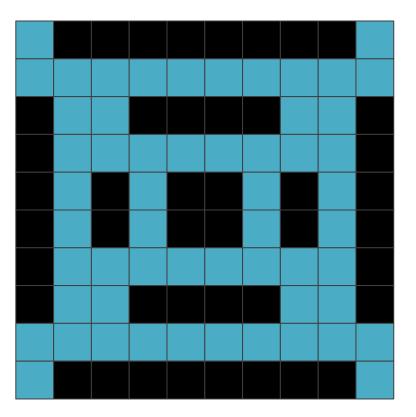


generalization

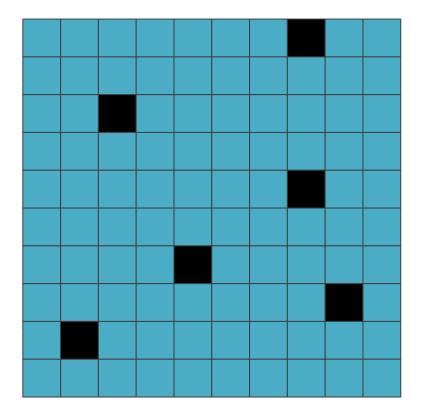


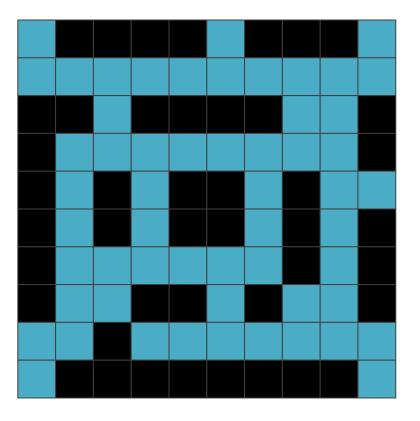
The world is regular ...



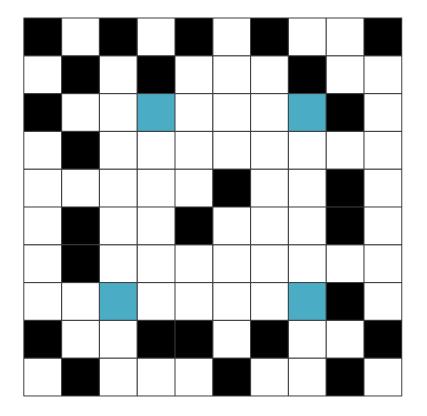


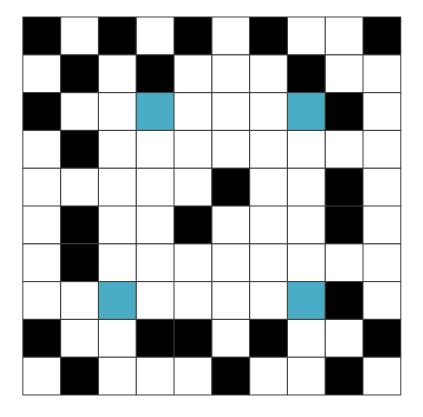
The world is more or less regular ...





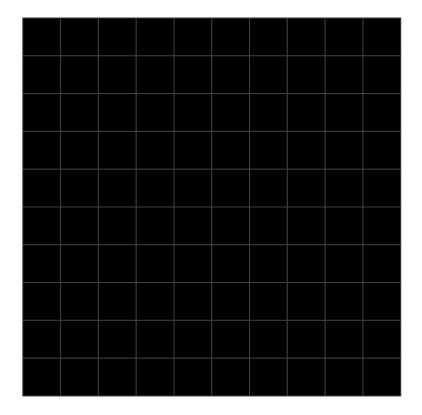
The world is regular but noisy ...



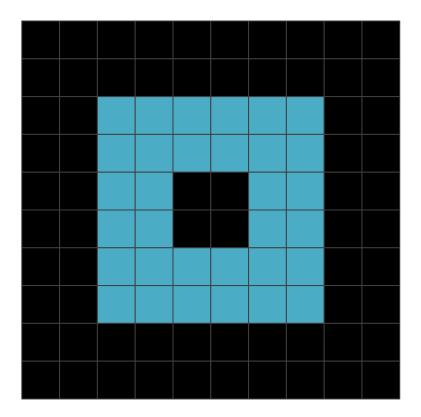


Noise?

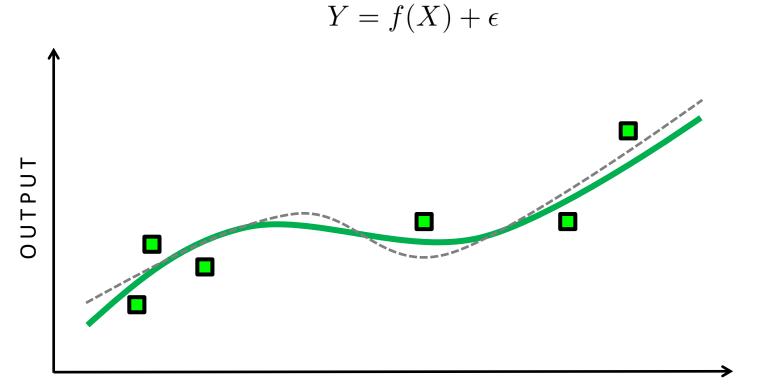
Part of a pattern?



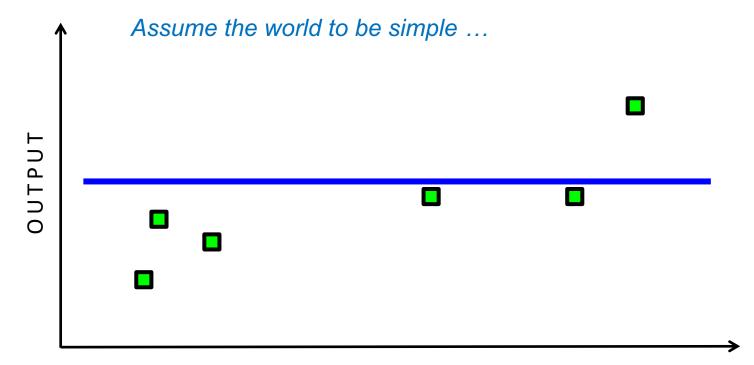
simple world, noisy data



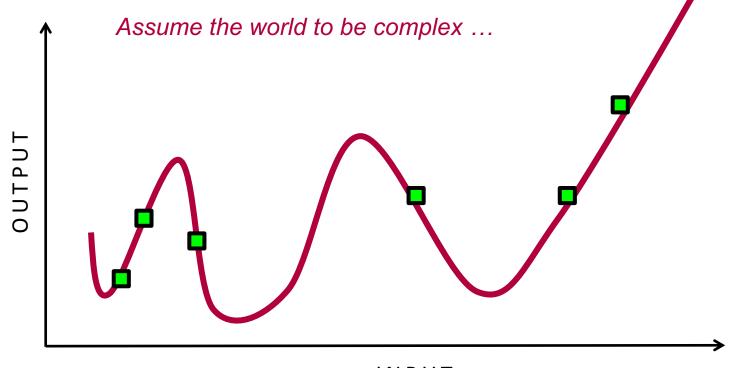
complex world, noise-free data



INPUT

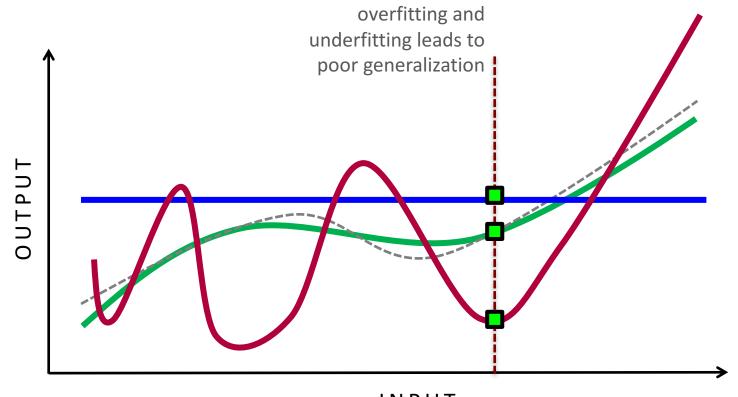


INPUT

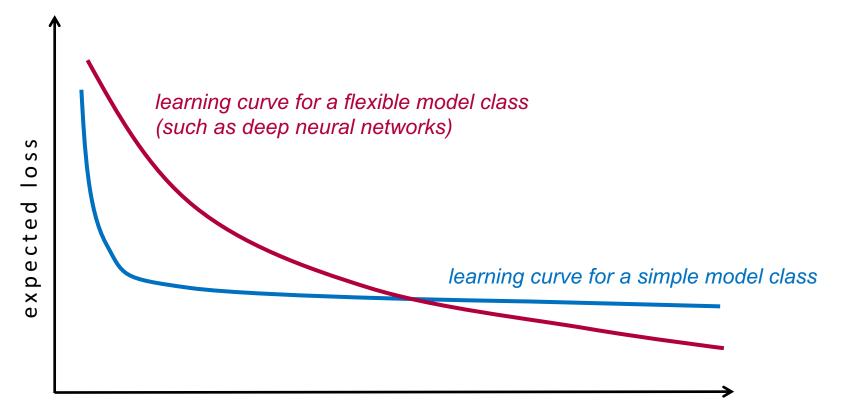


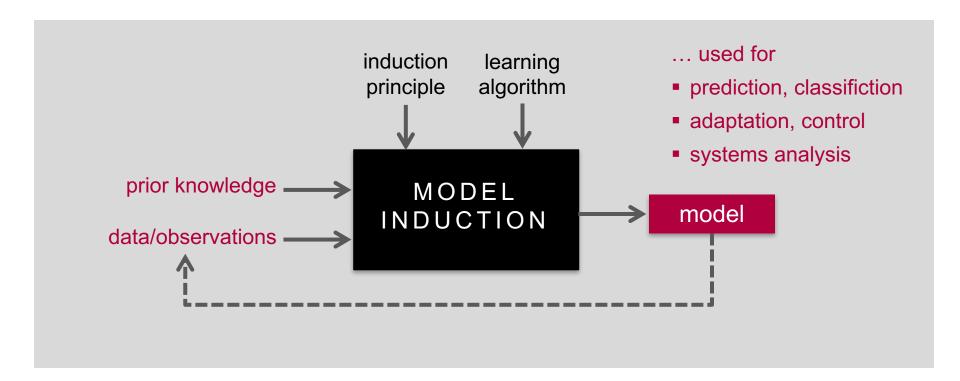
INPUT

KNOWLEDGE AND DATA



INPUT





- Learning essentially means revising prior knowledge in the light of observed data!
- Most explicit in frameworks such as Bayesian inference, ILP, ...
- Without prior knowledge, data is meaningless ...
- Data can compensate for a lack of knowledge, and vice versa.

MILESTONES OF AI

Essentially based on **machine learning** technology, makes use of deep neural networks and combines different types of learning (supervised, reinforcement, MCTS)

AlphaGo beats Lee Sedol (2016)

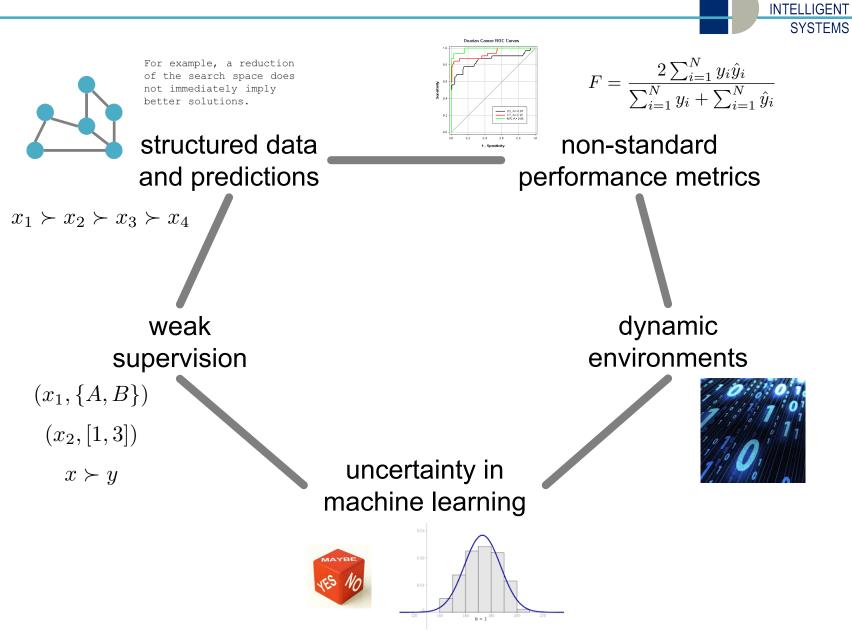
Massive information **retrieval** (four terabytes of structured and unstructured content), yet little **reasoning** and **learning**.

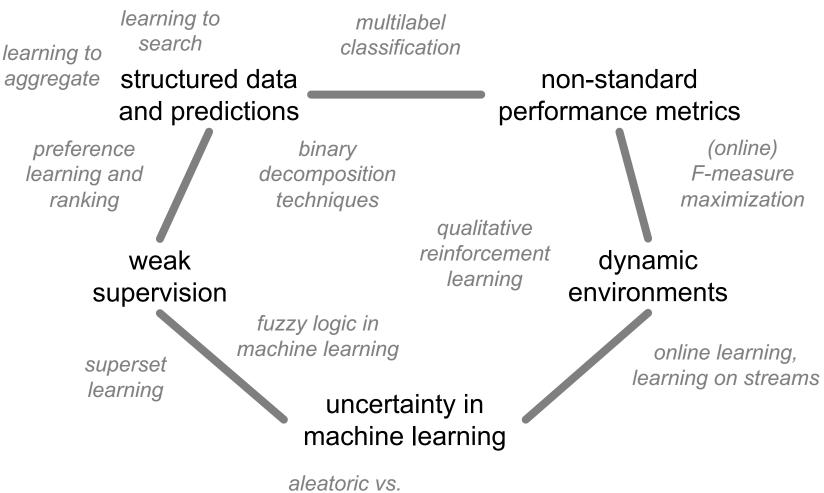
Watson wins Jeopardy! (2011)

Brute force **computing power** (massively parallel system, evaluation of 200 million positions per second), **systematic search**, structured domain.

Deep Blue beats Garry Kasparov (1997)

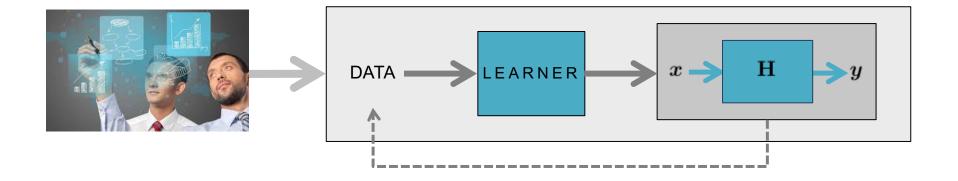
ISG RESEARCH THEMES





INTELLIGENT SYSTEMS

epistemic uncertainty



The data scientist is not supposed to solve the actual problem (provide an algorithm) but the problem to **learn how to solve that problem** (provide an ecorithm).

That's not necessarily an easy task either ...

Objective of the learning problem

- specify the prediction task

Sprives runction, model composition Specifying the model induction problem of the feature description feature description kernel functions ... Solving the model induction problem of the learning of the model evaluation and weight

All learning algorithms have (hyper-)parameters, which have a critical influence on the generalization performance. Tuning these parameters is often tedious and difficult.

Von Heles Wechneine overhendingeb dork 🄄 Antworten 🔁 Liete antworten 👘 🕈 Verbereinen 🔯 Antwieren 🕻 Junk 🛇 Liscoven Wert + 19/12/2016, 16:15 An strödt folgeblas upb derk, ethödt-tycht@liets upb derk, strödt-tycb@lists upb derk Uebes QTI

Im neuen Jahr sollten wir uns in unserem QT mal wieder treffen. Als Thema für das Treffen sehe ich – Kooperationen im QT und – Quo vadis "ML als Case Study"

Weitere Themenvorschläge nehme ich gerne entgegen.

Hier ein Doodle zur Terminfindung http://doodle.com/poll/pukqkwq8eyzma9zg

Viele Grüße und schöne Weihnachten Heike

sfb901-tpb2 mailing list
sfb901-tpb2@lists.uni-paderborn.de
https://lists.uni-paderborn.de/mailman/listinfo/sfb901-tpb2

SPAM or Not SPAM

Many ML algorithms operate in Euclidean spaces ...

Von Heike Wehrheim «wehrheim@upb.de» Antworten 🔁 Liste antworten 🔽 🔶 Weiterleiten 🖾 Archivieren 🖉 Junk 🚫 Löschen Mehr~ Betreff (sfb901-tpb2) Nächstes QT-Treffen

An sfb901-tpb3@ists.upb.def2; sfb901-tpb1@ists.upb.def2; sfb901-tpb2@ists.upb.def2; sfb901-tpc5@iists.upb.def2

Liebes QT!

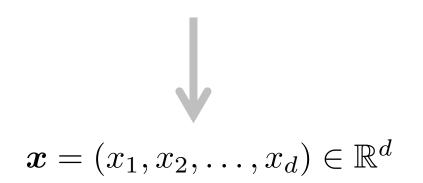
Im neuen Jahr sollten wir uns in unserem QT mal wieder treffen. Als Thema für das Treffen sehe ich – Kooperationen im QT und – Quo vadis "ML als Case Study"

Weitere Themenvorschläge nehme ich gerne entgegen.

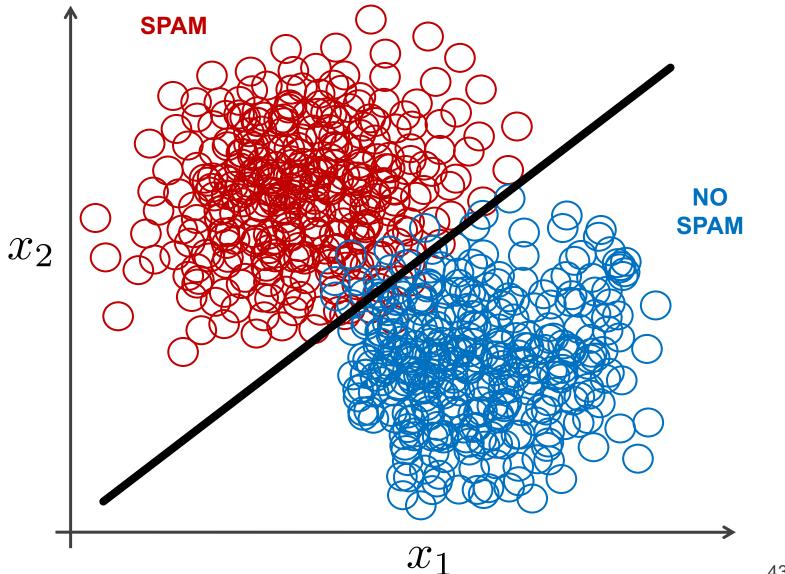
Hier ein Doodle zur Terminfindung http://doodle.com/poll/pukqkwq8eyzma9zg

Viele Grüße und schöne Weihnachten Heike

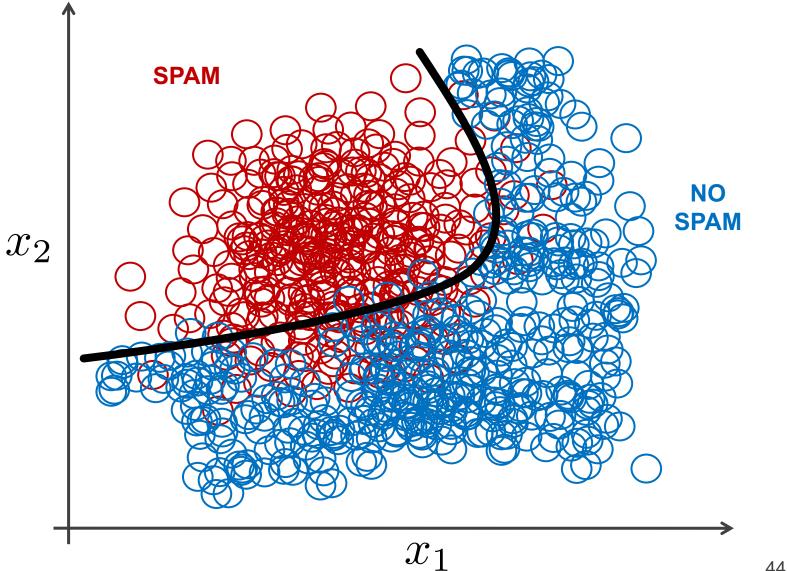
sfb901-tpb2 mailing list
sfb901-tpb2@lists.uni-paderborn.de
https://lists.uni-paderborn.de/mailman/listinfo/sfb901-tpb2



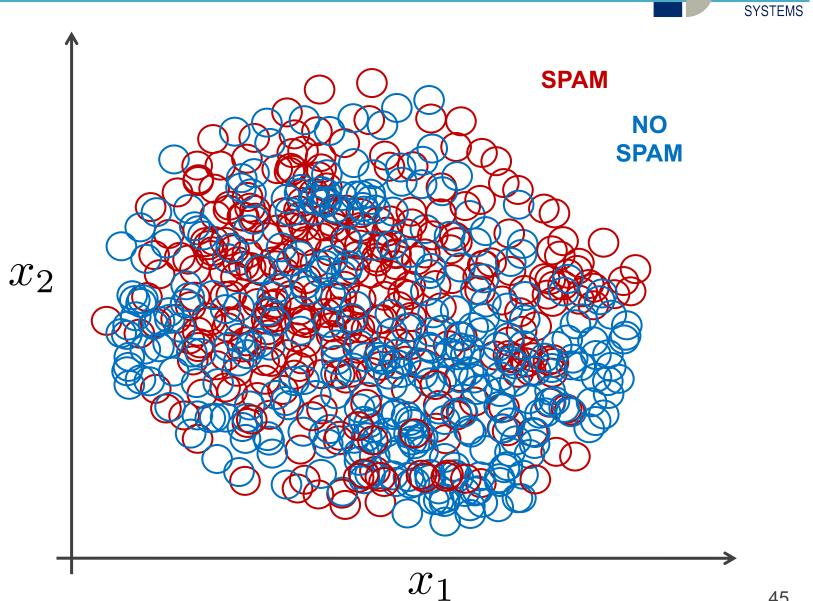
FEATURE ENGINEERING



FEATURE ENGINEERING



FEATURE ENGINEERING



INTELLIGENT

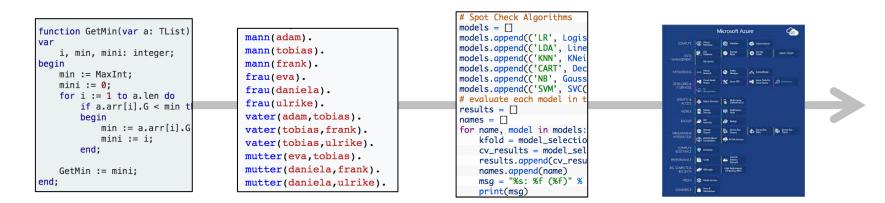
			FFINGTON PO			
POLITICS	ENTERTAINMENT	WELLNESS	WHAT'S WORKING	VOICES	VIDEO	ALL SE(

THE BLOG

Machine Learning as a Service: How Data Science Is Hitting the Masses

() 03/29/2016 02:43 pm ET | Updated Mar 29, 2016

f 🎐 🦻 in 🖾 💻	Contest 2nd Place: Automating Data Science	HPE Haven OnDemand
		🔀 OnDemand
Writer, entrepreneur, tech enthusiast	f in G+1{7 Share 14 Tweet	60+ Machine Learning APIs
	Tags: Algorithms, Automated, Automated Data Science, Feature Selection, Machine Learning	Analyze and extract from rich media Detect faces or fraud
	This post discusses some considerations, options, and opportunities for automating aspects of data science and machine learning. It is the second	Build data rich apps
	place recipient (tied) in the recent KDnuggets blog contest.	#MachineLearningApplied
	Ankit Sharma, DataRPM.	Machine Learning APIs to augment human intelligence
	Editor's note: This blog post was an entrant in the recent KDnuggets Automated Data Science and Machine Learning blog contest, where it tied for second place.	
	Data scientist is the sexiest job of 21st century. But even Data Scientists have to get our hands dirty to get things done. What if some of the manual	datascope

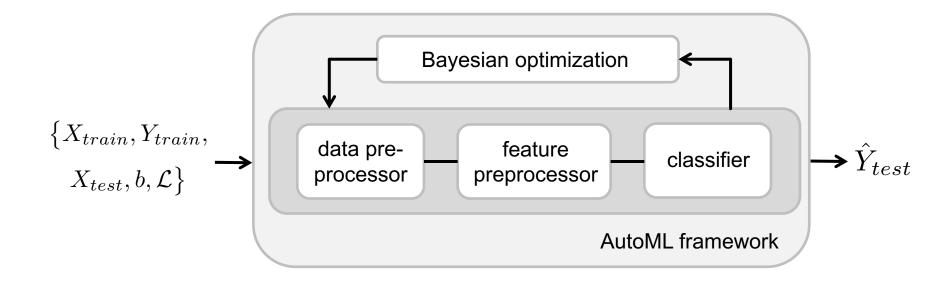


classical

knowledge-based programming programming

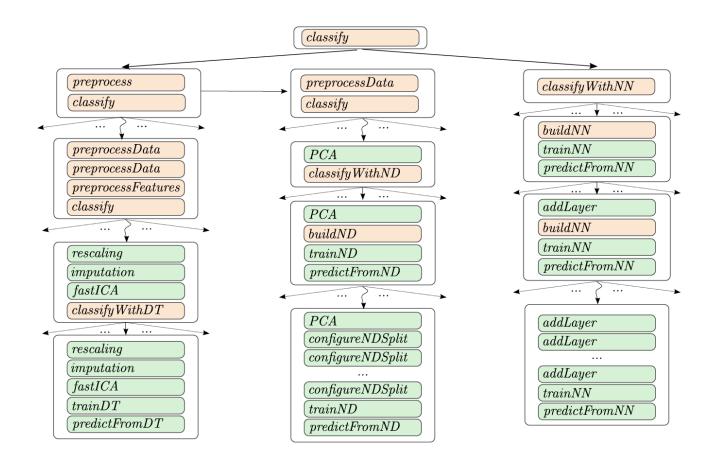
"implicit" programming

automated machine learning

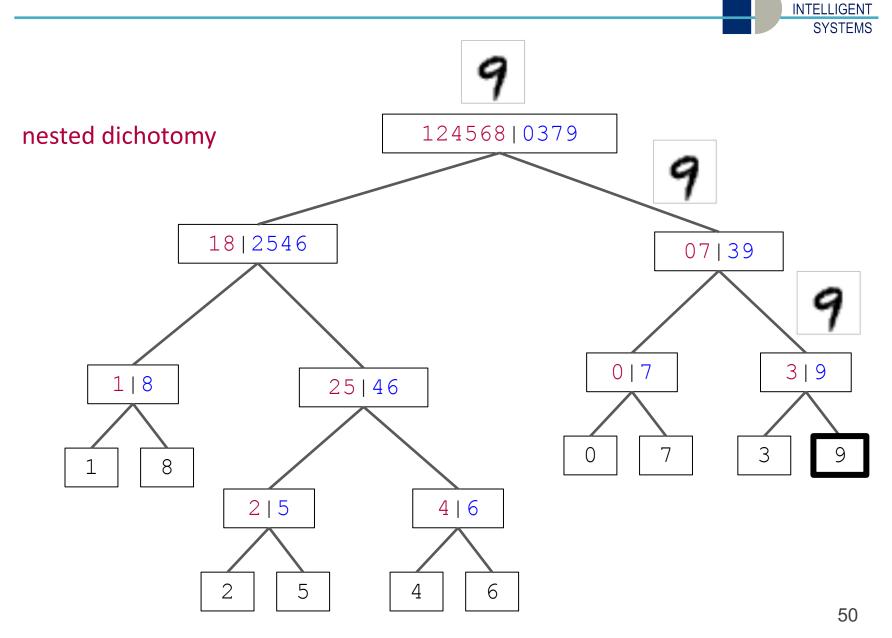


Existing approaches optimize parameters of a fixed ML pipeline.

Combining ML and planning (hierarchical task networks):



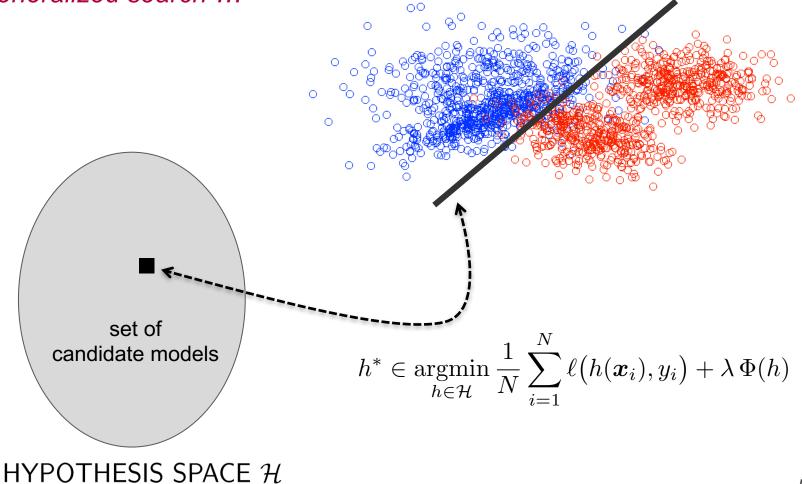
AUTO-ML VIA HIERARCHICAL PLANNING



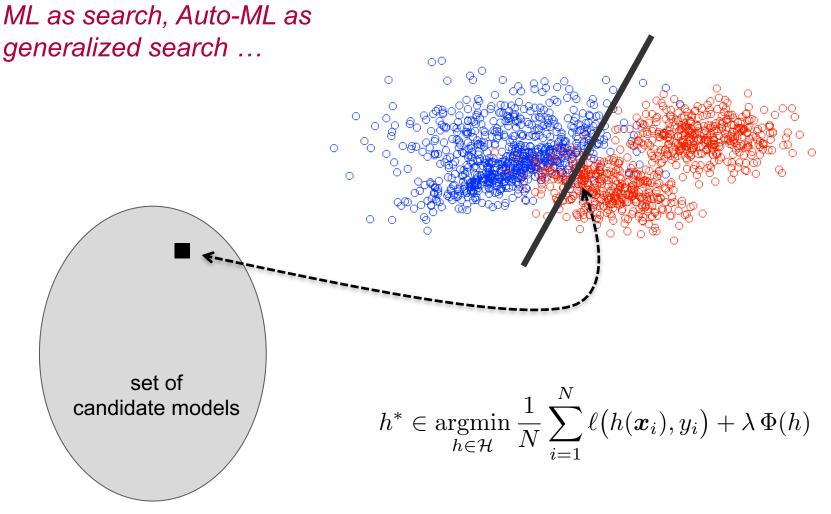
Dataset	RTN	RPND	ND	RTN	RPND	ND
audiology	76.92 ± 3.65	73.39± 5.28 •	68.76± 6.15 ●	74.46 ± 3.91	74.81 ± 4.10	70.97± 5.08 •
kropt	$33.25 {\pm}~0.96$	$32.55 \pm 0.87 \bullet$	27.96± 1.36 ●	48.98 ± 1.50	49.19 ± 1.33	$44.91 \pm 1.85 \bullet$
letter	71.50 ± 1.69	$66.82 \pm 2.55 \bullet$	51.51± 3.38 •	80.12 ± 0.74	79.83± 0.74 ●	$78.95 \pm 1.04 \bullet$
mfeat-factors	94.59 ± 1.36	94.12 ± 1.54	92.14± 1.52 ●	87.61 ± 1.50	87.24 ± 1.61	86.31± 1.71 ●
mfeat-fourier	$75.79{\pm}2.29$	74.71± 1.91 ●	$71.77 \pm 2.30 \bullet$	72.87 ± 1.80	72.83 ± 1.94	71.43± 1.99 ●
mfeat-karhunen	89.09 ± 1.84	88.66 ± 1.70	84.91± 2.50 ●	80.72 ± 1.98	80.25 ± 2.05	$78.87{\pm}2.09\bullet$
optdigits	93.40 ± 0.77	92.03± 1.64 ●	89.93± 2.38 ●	90.49 ± 0.90	89.67± 1.22 ●	88.75± 1.18 ●
page-blocks	$96.49 {\pm}~0.38$	96.30± 0.43 ●	95.71±0.66 ●	96.96 ± 0.36	96.96 ± 0.39	96.93 ± 0.36
pendigits	$93.78 {\pm}~0.82$	90.35± 2.26 •	87.19± 3.53 ●	95.37 ± 0.49	$94.99 \pm 0.52 \bullet$	$94.77 \pm 0.52 \bullet$
segment	$95.17 {\pm}~0.78$	93.91± 1.96 ●	90.20± 4.04 ●	95.71 ± 0.90	95.60 ± 0.79	$94.94 \pm 0.97 \bullet$
shuttle	$98.96{\pm}~5.83$	98.99 ± 5.74	98.98 ± 5.77	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00
vowel	82.91 ± 2.21	79.96± 3.64 ●	52.12± 8.83 •	72.97 ± 3.45	72.49 ± 3.52	71.09± 3.48 ●
yeast	$58.48 {\pm}~1.92$	58.27 ± 1.97	56.41± 1.89 ●	57.14 ± 2.22	57.25 ± 1.82	$56.29 \pm 2.35 \bullet$
ZOO	93.88 ± 4.27	93.62 ± 4.91	$90.98 \pm 5.69 \bullet$	93.66 ± 4.88	92.93 ± 4.90	$91.16 \pm 4.63 \bullet$

Table 2. Experimental results (mean accuracy \pm standard deviation) using logistic regression (left) and C4.5 (right)

ML as search, Auto-ML as generalized search ...

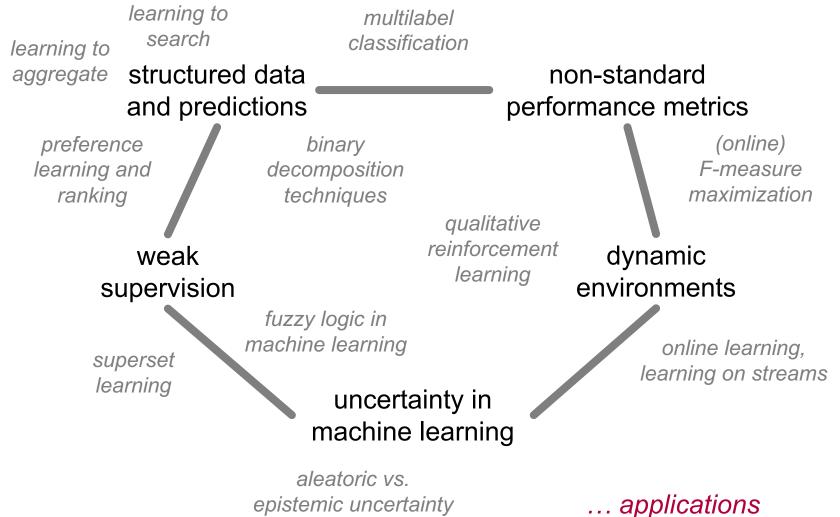


52



HYPOTHESIS SPACE ${\mathcal H}$

RESEARCH TOPICS



COOPERATION @ UPB (Wehrheim)

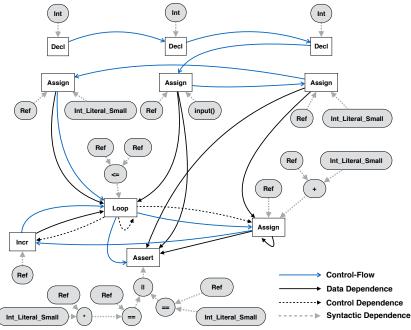
Predicting Rankings of Software Verification Competitions*

Mike Czech, Eyke Hüllermeier, and Heike Wehrheim

Department of Computer Science Paderborn University Germany

Abstract. Software verification competitions, such as the annu COMP, evaluate software verification tools with respect to their elity and efficiency. Typically, the outcome of a competition is a (p category-specific) *ranking* of the tools. For many applications, s

Weisfeiler-Lehman subtree kernels on a graph representation for software source code that mixes elements of control flow and program dependence graphs with abstract syntax trees.



Imprecise Matching of Requirements Specifications for Software Services using Fuzzy Logic

Marie C. Platenius, Wilhelm Schäfer Software Engineering Heinz Nixdorf Institute Paderborn University, Germany {m.platenius,wilhelm}@upb.de Ammar Shaker, Eyke Hüllermeier Intelligent Systems Department of Computer Science Paderborn University, Germany {ammar.shaker,eyke}@upb.de Matthias Becker Software Engineering Fraunhofer IEM Paderborn, Germany matthias.becker@iem.fraunhofer.de

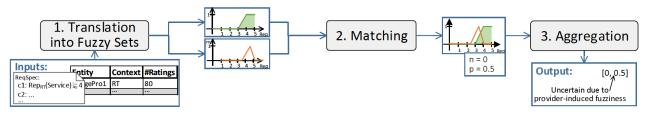
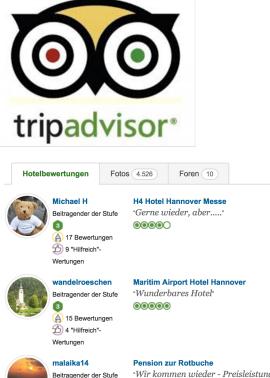


Fig. 2. Fuzzy Reputation Matching Procedure

COOPERATION @ UPB (Frick)



2

9 Bewertungen
 6 "Hilfreich" Wertungen

Pension zur Rotbuche "Wir kommen wieder - Preisleistungsverhältnis- GUT" ©©©©©

Economic aspects of rating and reputation, reverse engineering of rating systems such as TripAdvisor. Pairwise versus Pointwise Ranking: A Case Study

VITALIK MELNIKOV¹, PRITHA GUPTA¹, BERND FRICK², DANIEL KAIMANN², EYKE HÜLLERMEIER¹ ¹Department of Computer Science ²Faculty of Business Administration and Economics Paderborn University Warburger Str. 100, 33098 Paderborn e-mail: {melnikov,prithag,eyke}@mail.upb.de, {bernd.frick,daniel.kaimann}@upb.de

Abstract. Object ranking is one of the most relevant problems in the realm of preference learning and ranking. It is mostly tackled by means of two different techniques, often referred to as pairwise and pointwise ranking. In this paper, we present a case study in which we systematically compare two representatives of these techniques, a method based on the reduction of ranking to binary classification and so-called expected rank regression (ERR). Our experiments are meant to complement existing studies in this field, especially previous evaluations of ERR. And indeed, our results are not fully in agreement with previous findings and partly support different conclusions.

Keywords: Preference learning, object ranking, linear regression, logistic regression, hotel rating, TripAdvisor

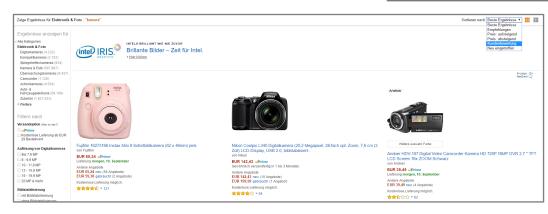
1. Introduction

Preference learning is an emerging subfield of machine learning that has received increasing attention in recent years [3]. Roughly speaking, the goal in preference learning is to induce preference models from observed data that reveals information about the preferences of an individual or a group of individuals in a direct or indirect way; these models are then used to predict the preferences in a new situation.

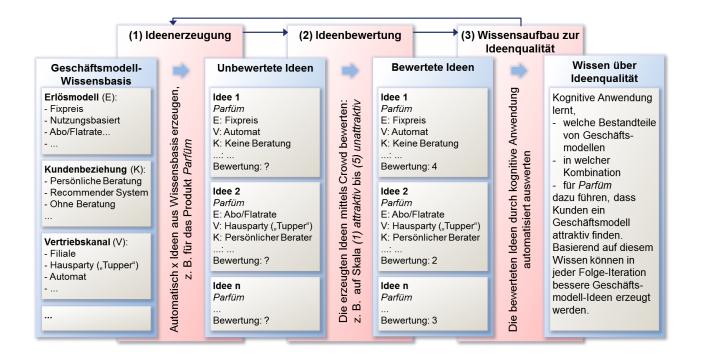
In general, a preference learning system is provided with a set of items (e.g., products) for which preferences are known, and the task is to learn a function that

Behavioral economics: How people aggregate customer reviews $(\rightarrow$ "learning to aggregate")

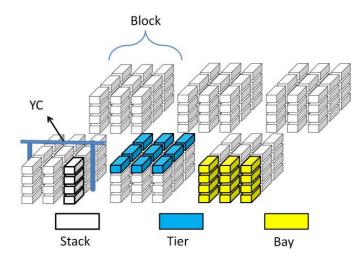
Make yo					nost pref	erred tabl	ot				
	inci i cvi		and the	umur	nost prei	circu tabi	ct.				
5	Stars					1	5 Stars				
4	Stars						4 Stars				
3	Stars						3 Stars				
2	Stars						2 Stars				
1	Star						1 Star				
5	Stars					2	5 Stars			1	
4	Stars						4 Stars	-		ī	
3	Stars						3 Stars				
2	Stars						2 Stars				
1	Star						1 Star				
								-			
Reset ra	nkin	~								Lon	
Resetra	апкіп	g								Tan	n sure

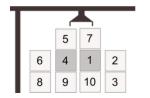


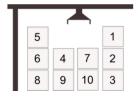
Machine learning for the support of technology-based consulting for the innovation of business models.



Machine Learning for improving optimization methods for the Container Pre-Marshalling problem.







Analyse des Sprachausbaus und der Entwicklung von Grammatik im Mittelniederdeutschen.

08.02.2017

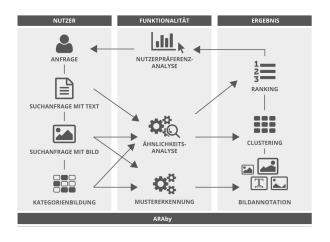
Fakultätsübergreifendes DFG-Projekt im Bereich Digital Humanities an der Universität Paderborn gestartet

Neues Forschungsprojekt im Bereich Digital Humanities an der Universität Paderborn:

"InterGramm" untersucht den Sprachausbau im Mittelniederdeutschen. Die Deutsche Forschungsgemeinschaft (DFG) fördert das Vorhaben mit rund einer halben Million Euro. **Prof. Dr. Doris Tophinke** (Fakultät für Kulturwissenschaften), **Jun.-Prof. Dr. Michaela Geierhos** (Fakultät für Wirtschaftswissenschaften) und **Prof. Dr. Eyke Hüllermeier** (Fakultät für Elektrotechnik, Informatik und Mathematik) arbeiten an einer interaktiven Grammatikanalyse historischer Texte.

Foto (Universität Paderborn, Johannes Pauly): Das interdisziplinäre Forschen kennzeichnet das innovative DFG-Forschungsprojekt "InterGramm"

ARAby: An adaptive retrieval and analysis tool for supporting image-based research processes



"Aby gets digital": Digitalization of the systematic comparison and analysis of images as practiced by Aby Warburg.

Temporal data mining for analyzing multimodal parent-child interaction.

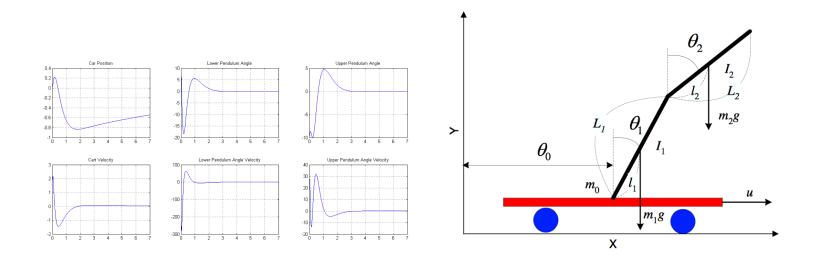
Infant's attention	Gaze at mot	her	
Mother's input			
Bodily movement			
Speech			

Interaction time

)0 lu tar kan	00:05:4 inen ja ta Ku		00:05:46.000 er ner ja vi lägger ne		05:48.000 rockså ja	00:05:50.000 mm *(nä:) du	00:05:52.000 ska gosa lite i
P-Gaze (56)	Dee							0
P-ObjAct [44]			Grab.	Put-away_K				
P-GestFunc [3]					L	O <mark>-In</mark> dex LOC		
P-Speech [37]		kanin ,	Ku,	Ku		K		
Child [191]								
C-Gaze [42]		K					0	K
C-ObjAct (62)	way_K			Reach_K	Grab_K	Hold_K	Cuddle_K	Explore_I
C-GestFunc (0)								
C-Speech (0)								

Die Macht der Algorithmen: Zur epistemologischen und gesellschaftlichen Dimension aktueller Algorithmik.

Machine learning for the control of technical systems.



- Machine learning is developing rapidly, emerging topics include Auto-ML, large-scale learning, deep learning, …
- Many applications and opportunities for interdisciplinary projects.

- Machine learning is developing rapidly, emerging topics include Auto-ML, large-scale learning, deep learning, …
- Many applications and opportunities for interdisciplinary projects.
- We looked at ML from the point of view of automated programming.
- Standard ML can be seen as combining knowledge and data (revising the former in light of the latter).
- Quest for "real" automation motivates work on Auto-ML.
- ML as an art, science, and technology, with mathematical, computational, technical, philosophical, social, psychological, and biological dimensions, amongst others ...